aboutsummaryrefslogtreecommitdiff
path: root/engines/sci/gfx/gfx_pixmap_scale.cpp
blob: 41e6102cbd32d24ade485be0ceaad94720317089 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * $URL$
 * $Id$
 *
 */

/* Required defines:
** FUNCNAME: Function name
** SIZETYPE: Type used for each pixel
** EXTRA_BYTE_OFFSET: Extra source byte offset for copying (used on big-endian machines in 24 bit mode)
*/

#include "sci/gfx/gfx_system.h"
#include "sci/gfx/gfx_resource.h"
#include "sci/gfx/gfx_tools.h"

namespace Sci {

#define EXTEND_COLOR(x) (unsigned) ((((unsigned) x) << 24) | (((unsigned) x) << 16) | (((unsigned) x) << 8) | ((unsigned) x))

template<int COPY_BYTES, typename SIZETYPE, int EXTRA_BYTE_OFFSET>
void _gfx_xlate_pixmap_unfiltered(gfx_mode_t *mode, gfx_pixmap_t *pxm, int scale) {
	SIZETYPE result_colors[GFX_PIC_COLORS];
	SIZETYPE alpha_color = 0xffffffff & mode->alpha_mask;
	SIZETYPE alpha_ormask = 0;
	int xfact = (scale) ? mode->xfact : 1;
	int yfact = (scale) ? mode->yfact : 1;
	int widthc, heightc; // Width duplication counter
	int line_width = xfact * pxm->index_width;
	int bytespp = mode->bytespp;
	int x, y;
	int i;
	byte byte_transparent = (mode->flags & GFX_MODE_FLAG_REVERSE_ALPHA) ?  0 : 255;
	byte byte_opaque = (mode->flags & GFX_MODE_FLAG_REVERSE_ALPHA) ?  255 : 0;
	byte *src = pxm->index_data;
	byte *dest = pxm->data;
	byte *alpha_dest = pxm->alpha_map;
	int using_alpha = pxm->color_key != GFX_PIXMAP_COLOR_KEY_NONE;
	int separate_alpha_map = (!mode->alpha_mask) && using_alpha;

	if (mode->flags & GFX_MODE_FLAG_REVERSE_ALPHA) {
		alpha_ormask = alpha_color;
		alpha_color = 0;
	}

	assert(bytespp == COPY_BYTES);

	if (separate_alpha_map && !alpha_dest)
		alpha_dest = pxm->alpha_map = (byte *)malloc(pxm->index_width * xfact * pxm->index_height * yfact);

	// Calculate all colors
	for (i = 0; i < pxm->colors_nr(); i++) {
		int col;
		const PaletteEntry& color = pxm->palette->getColor(i);
		if (mode->palette)
			col = color.parent_index;
		else {
			col = mode->format.ARGBToColor(0, color.r, color.g, color.b);
			col |= alpha_ormask;
		}
		result_colors[i] = col;
	}

	if (!separate_alpha_map && pxm->color_key != GFX_PIXMAP_COLOR_KEY_NONE)
		result_colors[pxm->color_key] = alpha_color;

	src = pxm->index_data; // Workaround for gcc 4.2.3 bug on EMT64
	for (y = 0; y < pxm->index_height; y++) {
		byte *prev_dest = dest;
		byte *prev_alpha_dest = alpha_dest;

		for (x = 0; x < pxm->index_width; x++) {
			int isalpha;
			SIZETYPE col = result_colors[isalpha = *src++] << (EXTRA_BYTE_OFFSET * 8);
			isalpha = (isalpha == pxm->color_key) && using_alpha;

			// O(n) loops. There is an O(ln(n)) algorithm for this, but its slower for small n (which we're optimizing for here).
			// And, anyway, most of the time is spent in memcpy() anyway.

			for (widthc = 0; widthc < xfact; widthc++) {
				memcpy(dest, &col, COPY_BYTES);
				dest += COPY_BYTES;
			}

			if (separate_alpha_map) { // Set separate alpha map
				memset(alpha_dest, (isalpha) ? byte_transparent : byte_opaque, xfact);
				alpha_dest += xfact;
			}
		}

		// Copies each line. O(n) iterations; again, this could be optimized to O(ln(n)) for very high resolutions,
		// but that wouldn't really help that much, as the same amount of data still would have to be transferred.
		for (heightc = 1; heightc < yfact; heightc++) {
			memcpy(dest, prev_dest, line_width * bytespp);
			dest += line_width * bytespp;
			if (separate_alpha_map) {
				memcpy(alpha_dest, prev_alpha_dest, line_width);
				alpha_dest += line_width;
			}
		}
	}
}


// linear filter: Macros (in reverse order)

#define X_CALC_INTENSITY_NORMAL (ctexel[i] << 16) + ((linecolor[i]) * (256-column_valuator)) + ((othercolumn[i] * column_valuator)) * (256-line_valuator)
#define X_CALC_INTENSITY_CENTER (ctexel[i] << 16) + ((linecolor[i]) * (256-column_valuator))

#define WRITE_XPART(X_CALC_INTENSITY, DO_X_STEP) \
				for (subx = 0; subx < ((DO_X_STEP) ? (xfact >> 1) : 1); subx++) { \
					unsigned int intensity; \
					wrcolor = 0; \
					for (i = 0; i < 3; i++) { \
						intensity = X_CALC_INTENSITY; \
						wrcolor |= (intensity >> shifts[i]) & masks[i]; \
					} \
					i = 3; \
					intensity = X_CALC_INTENSITY; \
					if (inverse_alpha) \
						intensity = ~intensity; \
					wrcolor |= (intensity >> shifts[i]) & masks[i]; \
					if (separate_alpha_map) \
						*alpha_wrpos++ = intensity >> 24; \
					wrcolor <<= (EXTRA_BYTE_OFFSET * 8); \
					memcpy(wrpos, &wrcolor, COPY_BYTES); \
					wrpos += COPY_BYTES; \
					if (DO_X_STEP) \
						column_valuator -= column_step; \
				} \
				if (DO_X_STEP) \
				        column_step = -column_step
// End of macro definition


#define Y_CALC_INTENSITY_CENTER 0
#define Y_CALC_INTENSITY_NORMAL otherline[i] * line_valuator

#define WRITE_YPART(DO_Y_STEP, LINE_COLOR) \
			for (suby = 0; suby < ((DO_Y_STEP)? yfact >> 1 : 1); suby++) { \
				int column_valuator = column_step? 128 - (column_step >> 1) : 256; \
				int linecolor[4]; \
				int othercolumn[4]; \
				int i; \
				SIZETYPE wrcolor; \
				wrpos = sublinepos; \
				alpha_wrpos = alpha_sublinepos; \
				for (i = 0; i < 4; i++) \
					linecolor[i] = LINE_COLOR; \
				/*-- left half --*/ \
				MAKE_PIXEL((x == 0), othercolumn, ctexel, src[-1]); \
				WRITE_XPART(X_CALC_INTENSITY_NORMAL, 1); \
				column_valuator -= column_step; \
				/*-- center --*/ \
				if (xfact & 1) { \
					WRITE_XPART(X_CALC_INTENSITY_CENTER, 0); \
				} \
				/*-- right half --*/ \
				MAKE_PIXEL((x + 1 == pxm->index_width), othercolumn, ctexel, src[+1]); \
				WRITE_XPART(X_CALC_INTENSITY_NORMAL, 1); \
				if (DO_Y_STEP) \
					line_valuator -= line_step; \
				sublinepos += pxm->width * bytespp; \
				alpha_sublinepos += pxm->width; \
			} \
			if (DO_Y_STEP) \
			        line_step = -line_step
// End of macro definition


template<int COPY_BYTES, typename SIZETYPE, int EXTRA_BYTE_OFFSET>
void _gfx_xlate_pixmap_linear(gfx_mode_t *mode, gfx_pixmap_t *pxm, int scale) {
	int xfact = mode->xfact;
	int yfact = mode->yfact;
	int line_step = (yfact < 2) ? 0 : 256 / (yfact & ~1);
	int column_step = (xfact < 2) ? 0 : 256 / (xfact & ~1);
	int bytespp = mode->bytespp;
	byte *src = pxm->index_data;
	byte *dest = pxm->data;
	byte *alpha_dest = pxm->alpha_map;
	int using_alpha = pxm->color_key != GFX_PIXMAP_COLOR_KEY_NONE;
	int separate_alpha_map = (!mode->alpha_mask) && using_alpha;
	unsigned int masks[4], shifts[4], zero[3];
	int x, y;
	byte inverse_alpha = mode->flags & GFX_MODE_FLAG_REVERSE_ALPHA;

	zero[0] = 255;
	zero[1] = zero[2] = 0;

	if (separate_alpha_map) {
		masks[3] = 0;
		shifts[3] = 24;
	}

	assert(bytespp == COPY_BYTES);
	assert(!mode->palette);

	masks[0] = mode->red_mask;
	masks[1] = mode->green_mask;
	masks[2] = mode->blue_mask;
	masks[3] = mode->alpha_mask;
	shifts[0] = mode->red_shift;
	shifts[1] = mode->green_shift;
	shifts[2] = mode->blue_shift;
	shifts[3] = mode->alpha_shift;

	if (separate_alpha_map && !alpha_dest)
		alpha_dest = pxm->alpha_map = (byte *)malloc(pxm->index_width * xfact * pxm->index_height * yfact);

	for (y = 0; y < pxm->index_height; y++) {
		byte *linepos = dest;
		byte *alpha_linepos = alpha_dest;

		for (x = 0; x < pxm->index_width; x++) {
			int otherline[4]; // the above line or the line below
			int ctexel[4]; // Current texel
			int subx, suby;
			int line_valuator = line_step ? 128 - (line_step >> 1) : 256;
			byte *wrpos, *alpha_wrpos;
			byte *sublinepos = linepos;
			byte *alpha_sublinepos = alpha_linepos;

			ctexel[0] = ctexel[1] = ctexel[2] = ctexel[3] = 0;

#define MAKE_PIXEL(cond, rec, other, nr) \
			if ((cond) || (using_alpha && nr == pxm->color_key)) { \
				rec[0] = other[0] - ctexel[0]; \
				rec[1] = other[1] - ctexel[1]; \
				rec[2] = other[2] - ctexel[2]; \
				rec[3] = 0xffff - ctexel[3]; \
			} else { \
				const PaletteEntry& e = (*pxm->palette)[nr]; \
				rec[0] = (EXTEND_COLOR(e.r) >> 16) - ctexel[0]; \
				rec[1] = (EXTEND_COLOR(e.g) >> 16) - ctexel[1]; \
				rec[2] = (EXTEND_COLOR(e.b) >> 16) - ctexel[2]; \
				rec[3] = 0 - ctexel[3]; \
			}

			MAKE_PIXEL(0, ctexel, zero, *src);

			//-- Upper half --
			MAKE_PIXEL((y == 0), otherline, ctexel, src[-pxm->index_width]);
			WRITE_YPART(1, Y_CALC_INTENSITY_NORMAL);

			if (yfact & 1) {
				WRITE_YPART(0, Y_CALC_INTENSITY_CENTER);
			}

			//-- Lower half --
			line_valuator -= line_step;
			MAKE_PIXEL((y + 1 == pxm->index_height), otherline, ctexel, src[pxm->index_width]);
			WRITE_YPART(1, Y_CALC_INTENSITY_NORMAL);

			src++;
			linepos += xfact * bytespp;
			alpha_linepos += xfact;
		}

		dest += pxm->width * yfact * bytespp;
		alpha_dest += pxm->width * yfact;
	}
}


//----------------------
//** Trilinear filter **
//----------------------


#ifndef GFX_GET_PIXEL_DELTA
#define GFX_GET_PIXEL_DELTA
static void gfx_get_pixel_delta(unsigned int *color, int *delta, unsigned int *pixel0, unsigned int *pixel1) {
	int j;
	int transp0 = pixel0[3] == 0xffffff;
	int transp1 = pixel1[3] == 0xffffff;

	if (transp0 && !transp1) { // Transparent -> Opaque
		memset(delta, 0, sizeof(int) * 3);
		delta[3] = ((pixel1[3] >> 8) - (pixel0[3] >> 8));
		memcpy(color, pixel1, sizeof(int) * 3);
		color[3] = 0xffffff;
	} else if (!transp0 && transp1) { // Opaque -> Transparent
		memset(delta, 0, sizeof(int) * 3);
		delta[3] = ((pixel1[3] >> 8) - (pixel0[3] >> 8));
		memcpy(color, pixel0, sizeof(int) * 4);
	} else if (transp0 && transp1) { // Transparent
		delta[3] = 0;
		color[3] = 0xffffff;
	} else { // Opaque
		memcpy(color, pixel0, sizeof(int) * 4);
		for (j = 0; j < 4; j++)
			delta[j] = ((pixel1[j] >> 8) - (pixel0[j] >> 8));
	}
}


static void gfx_apply_delta(unsigned int *color, int *delta, int factor) {
	int i;

	for (i = 0; i < 4; i++)
		color[i] += delta[i] * factor;
}
#endif

#define MAKE_PIXEL_TRILINEAR(cond, rec, nr) \
			if (!(cond) || (using_alpha && nr == pxm->color_key)) { \
				rec[0] = 0; \
				rec[1] = 0; \
				rec[2] = 0; \
				rec[3] = 0xffffff; \
			} else { \
				const PaletteEntry& e = (*pxm->palette)[nr]; \
				rec[0] = (EXTEND_COLOR(e.r) >> 8); \
				rec[1] = (EXTEND_COLOR(e.g) >> 8); \
				rec[2] = (EXTEND_COLOR(e.b) >> 8); \
				rec[3] = 0; \
			}

#define REVERSE_ALPHA(foo) ((inverse_alpha) ? ~(foo) : (foo))

template<int COPY_BYTES, typename SIZETYPE, int EXTRA_BYTE_OFFSET>
void _gfx_xlate_pixmap_trilinear(gfx_mode_t *mode, gfx_pixmap_t *pxm, int scale) {
	int xfact = mode->xfact;
	int yfact = mode->yfact;
	int line_step = (yfact < 2) ? 0 : 256 / yfact;
	int column_step = (xfact < 2) ? 0 : 256 / xfact;
	int bytespp = mode->bytespp;
	byte *src = pxm->index_data;
	byte *dest = pxm->data;
	byte *alpha_dest = pxm->alpha_map;
	int using_alpha = pxm->color_key != GFX_PIXMAP_COLOR_KEY_NONE;
	int separate_alpha_map = (!mode->alpha_mask) && using_alpha;
	unsigned int masks[4], shifts[4];
	unsigned int pixels[4][4];
	// 0 1
	// 2 3
	int x, y;
	byte inverse_alpha = mode->flags & GFX_MODE_FLAG_REVERSE_ALPHA;

	if (separate_alpha_map) {
		masks[3] = 0;
		shifts[3] = 24;
	}

	assert(bytespp == COPY_BYTES);
	assert(!mode->palette);

	masks[0] = mode->red_mask;
	masks[1] = mode->green_mask;
	masks[2] = mode->blue_mask;
	masks[3] = mode->alpha_mask;
	shifts[0] = mode->red_shift;
	shifts[1] = mode->green_shift;
	shifts[2] = mode->blue_shift;
	shifts[3] = mode->alpha_shift;

	if (!(pxm->index_width && pxm->index_height))
		return;

	if (separate_alpha_map && !alpha_dest)
		alpha_dest = pxm->alpha_map = (byte *)malloc(pxm->index_width * xfact * pxm->index_height * yfact);

	src -= pxm->index_width + 1;

	for (y = 0; y <= pxm->index_height; y++) {
		byte *y_dest_backup = dest;
		byte *y_alpha_dest_backup = alpha_dest;
		int y_valuator = (y > 0) ? 0 : 128;
		int yc_count;


		if (y == 0)
			yc_count = yfact >> 1;
		else if (y == pxm->index_height)
			yc_count = (yfact + 1) >> 1;
		else
			yc_count = yfact;

		if (yfact & 1)
			y_valuator += line_step >> 1;

		for (x = 0; x <= pxm->index_width; x++) {
			byte *x_dest_backup = dest;
			byte *x_alpha_dest_backup = alpha_dest;
			int x_valuator = (x > 0) ? 0 : 128;
			int xc_count;
			unsigned int leftcolor[4], rightcolor[4];
			int leftdelta[4], rightdelta[4];
			int xc, yc;

			if (x == 0)
				xc_count = xfact >> 1;
			else if (x == pxm->index_width)
				xc_count = (xfact + 1) >> 1;
			else
				xc_count = xfact;

			if (xfact & 1)
				x_valuator += column_step >> 1;

			MAKE_PIXEL_TRILINEAR((y && x), pixels[0], *src);
			MAKE_PIXEL_TRILINEAR((y && (x < pxm->index_width)), pixels[1], src[1]);
			MAKE_PIXEL_TRILINEAR(((y < pxm->index_width) && x), pixels[2], src[pxm->index_width]);
			MAKE_PIXEL_TRILINEAR(((y < pxm->index_width) && (x < pxm->index_width)), pixels[3], src[pxm->index_width + 1]);

			// Optimize Me

			gfx_get_pixel_delta(leftcolor, leftdelta, pixels[0], pixels[2]);
			gfx_get_pixel_delta(rightcolor, rightdelta, pixels[1], pixels[3]);
			gfx_apply_delta(leftcolor, leftdelta, y_valuator);
			gfx_apply_delta(rightcolor, rightdelta, y_valuator);

			for (yc = 0; yc < yc_count; yc++) {
				unsigned int color[4];
				int delta[4];
				byte *yc_dest_backup = dest;
				byte *yc_alpha_dest_backup = alpha_dest;

				gfx_get_pixel_delta(color, delta, leftcolor, rightcolor);

				gfx_apply_delta(color, delta, x_valuator);

				for (xc = 0; xc < xc_count; xc++) {
					SIZETYPE wrcolor;
					int i;
					wrcolor = 0;

					for (i = 0; i < 3; i++)
						wrcolor |= ((color[i] << 8) >> shifts[i]) & masks[i];

					if (separate_alpha_map) {
						*alpha_dest++ = REVERSE_ALPHA(color[3] >> 16);
					} else
						wrcolor |= REVERSE_ALPHA((color[3] << 8) >> shifts[3]) & masks[3];

					wrcolor <<= (EXTRA_BYTE_OFFSET * 8);

					memcpy(dest, &wrcolor, COPY_BYTES);
					dest += COPY_BYTES;
					gfx_apply_delta(color, delta, column_step);
				}
				gfx_apply_delta(leftcolor, leftdelta, line_step);
				gfx_apply_delta(rightcolor, rightdelta, line_step);

				dest = yc_dest_backup + pxm->index_width * xfact * COPY_BYTES;
				alpha_dest = yc_alpha_dest_backup + pxm->index_width * xfact;
			}

			dest = x_dest_backup + xc_count * COPY_BYTES;
			alpha_dest = x_alpha_dest_backup + xc_count;

			if (x < pxm->index_width)
				src++;
		}
		dest = y_dest_backup + pxm->index_width * xfact * yc_count * COPY_BYTES;
		alpha_dest = y_alpha_dest_backup + pxm->index_width * xfact * yc_count;
	}
}

#undef REVERSE_ALPHA
#undef WRITE_YPART
#undef Y_CALC_INTENSITY_CENTER
#undef Y_CALC_INTENSITY_NORMAL
#undef WRITE_XPART
#undef X_CALC_INTENSITY_CENTER
#undef X_CALC_INTENSITY_NORMAL
#undef MAKE_PIXEL_TRILINEAR
#undef MAKE_PIXEL
#undef SIZETYPE
#undef EXTEND_COLOR



static void _gfx_xlate_pixmap_unfiltered(gfx_mode_t *mode, gfx_pixmap_t *pxm, int scale) {
	switch (mode->bytespp) {

	case 1:
		_gfx_xlate_pixmap_unfiltered<1, uint8, 0>(mode, pxm, scale);
		break;

	case 2:
		_gfx_xlate_pixmap_unfiltered<2, uint16, 0>(mode, pxm, scale);
		break;

	case 3:
#ifdef SCUMM_BIG_ENDIAN
		_gfx_xlate_pixmap_unfiltered<3, uint32, 1>(mode, pxm, scale);
#else
		_gfx_xlate_pixmap_unfiltered<3, uint32, 0>(mode, pxm, scale);
#endif
		break;

	case 4:
		_gfx_xlate_pixmap_unfiltered<4, uint32, 0>(mode, pxm, scale);
		break;

	default:
		error("Invalid mode->bytespp=%d", mode->bytespp);
	}

	if (pxm->flags & GFX_PIXMAP_FLAG_SCALED_INDEX) {
		pxm->width = pxm->index_width;
		pxm->height = pxm->index_height;
	} else {
		pxm->width = pxm->index_width * mode->xfact;
		pxm->height = pxm->index_height * mode->yfact;
	}
}

static void _gfx_xlate_pixmap_linear(gfx_mode_t *mode, gfx_pixmap_t *pxm, int scale) {
	if (mode->palette || !scale) { // fall back to unfiltered
		_gfx_xlate_pixmap_unfiltered(mode, pxm, scale);
		return;
	}

	pxm->width = pxm->index_width * mode->xfact;
	pxm->height = pxm->index_height * mode->yfact;

	switch (mode->bytespp) {

	case 1:
		_gfx_xlate_pixmap_linear<1, uint8, 0>(mode, pxm, scale);
		break;

	case 2:
		_gfx_xlate_pixmap_linear<2, uint16, 0>(mode, pxm, scale);
		break;

	case 3:
#ifdef SCUMM_BIG_ENDIAN
		_gfx_xlate_pixmap_linear<3, uint32, 1>(mode, pxm, scale);
#else
		_gfx_xlate_pixmap_linear<3, uint32, 0>(mode, pxm, scale);
#endif
		break;

	case 4:
		_gfx_xlate_pixmap_linear<4, uint32, 0>(mode, pxm, scale);
		break;

	default:
		error("Invalid mode->bytespp=%d", mode->bytespp);
	}

}

static void _gfx_xlate_pixmap_trilinear(gfx_mode_t *mode, gfx_pixmap_t *pxm, int scale) {
	if (mode->palette || !scale) { // fall back to unfiltered
		_gfx_xlate_pixmap_unfiltered(mode, pxm, scale);
		return;
	}

	pxm->width = pxm->index_width * mode->xfact;
	pxm->height = pxm->index_height * mode->yfact;

	switch (mode->bytespp) {
	case 1:
		_gfx_xlate_pixmap_trilinear<1, uint8, 0>(mode, pxm, scale);
		break;

	case 2:
		_gfx_xlate_pixmap_trilinear<2, uint16, 0>(mode, pxm, scale);
		break;

	case 3:
#ifdef SCUMM_BIG_ENDIAN
		_gfx_xlate_pixmap_trilinear<3, uint32, 1>(mode, pxm, scale);
#else
		_gfx_xlate_pixmap_trilinear<3, uint32, 0>(mode, pxm, scale);
#endif
		break;

	case 4:
		_gfx_xlate_pixmap_trilinear<4, uint32, 0>(mode, pxm, scale);
		break;

	default:
		error("Invalid mode->bytespp=%d", mode->bytespp);

	}
}

void gfx_xlate_pixmap(gfx_pixmap_t *pxm, gfx_mode_t *mode, gfx_xlate_filter_t filter) {
	int was_allocated = 0;

	if (mode->palette) {
		if (pxm->palette && pxm->palette != mode->palette)
			pxm->palette->mergeInto(mode->palette);
	}


	if (!pxm->data) {
		pxm->data = (byte*)malloc(mode->xfact * mode->yfact * pxm->index_width * pxm->index_height * mode->bytespp + 1);
		// +1: Eases coying on BE machines in 24 bpp packed mode
		// Assume that memory, if allocated already, will be sufficient

		// Allocate alpha map
		if (!mode->alpha_mask && pxm->colors_nr() < GFX_PIC_COLORS)
			pxm->alpha_map = (byte*)malloc(mode->xfact * mode->yfact * pxm->index_width * pxm->index_height + 1);
	} else
		was_allocated = 1;

	switch (filter) {
	case GFX_XLATE_FILTER_NONE:
		_gfx_xlate_pixmap_unfiltered(mode, pxm, !(pxm->flags & GFX_PIXMAP_FLAG_SCALED_INDEX));
		break;

	case GFX_XLATE_FILTER_LINEAR:
		_gfx_xlate_pixmap_linear(mode, pxm, !(pxm->flags & GFX_PIXMAP_FLAG_SCALED_INDEX));
		break;

	case GFX_XLATE_FILTER_TRILINEAR:
		_gfx_xlate_pixmap_trilinear(mode, pxm, !(pxm->flags & GFX_PIXMAP_FLAG_SCALED_INDEX));
		break;

	default:
		error("Attempt to filter pixmap %04x in invalid mode #%d", pxm->ID, filter);

		if (!was_allocated) {
			if (!mode->alpha_mask && pxm->colors_nr() < GFX_PIC_COLORS)
				free(pxm->alpha_map);
			free(pxm->data);
		}
	}
	if (pxm->palette)
		pxm->palette_revision = pxm->palette->getRevision();
}


} // End of namespace Sci