1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "sci/sound/audio32.h"
#include "audio/audiostream.h" // for SeekableAudioStream
#include "audio/decoders/raw.h" // for makeRawStream, RawFlags::FLAG_16BITS
#include "audio/decoders/wave.h" // for makeWAVStream
#include "audio/rate.h" // for RateConverter, makeRateConverter
#include "audio/timestamp.h" // for Timestamp
#include "common/config-manager.h" // for ConfMan
#include "common/endian.h" // for MKTAG
#include "common/memstream.h" // for MemoryReadStream
#include "common/str.h" // for String
#include "common/stream.h" // for SeekableReadStream
#include "common/system.h" // for OSystem, g_system
#include "common/textconsole.h" // for warning
#include "common/types.h" // for Flag::NO
#include "engine.h" // for Engine, g_engine
#include "sci/engine/vm_types.h" // for reg_t, make_reg, NULL_REG
#include "sci/resource.h" // for ResourceId, ResourceType::kResour...
#include "sci/sci.h" // for SciEngine, g_sci, getSciVersion
#include "sci/sound/decoders/sol.h" // for makeSOLStream
namespace Sci {
bool detectSolAudio(Common::SeekableReadStream &stream) {
const size_t initialPosition = stream.pos();
// TODO: Resource manager for audio resources reads past the
// header so even though this is the detection algorithm
// in SSCI, ScummVM can't use it
#if 0
byte header[6];
if (stream.read(header, sizeof(header)) != sizeof(header)) {
stream.seek(initialPosition);
return false;
}
stream.seek(initialPosition);
if (header[0] != 0x8d || READ_BE_UINT32(header + 2) != MKTAG('S', 'O', 'L', 0)) {
return false;
}
return true;
#else
byte header[4];
if (stream.read(header, sizeof(header)) != sizeof(header)) {
stream.seek(initialPosition);
return false;
}
stream.seek(initialPosition);
if (READ_BE_UINT32(header) != MKTAG('S', 'O', 'L', 0)) {
return false;
}
return true;
#endif
}
bool detectWaveAudio(Common::SeekableReadStream &stream) {
const size_t initialPosition = stream.pos();
byte blockHeader[8];
if (stream.read(blockHeader, sizeof(blockHeader)) != sizeof(blockHeader)) {
stream.seek(initialPosition);
return false;
}
stream.seek(initialPosition);
const uint32 headerType = READ_BE_UINT32(blockHeader);
if (headerType != MKTAG('R', 'I', 'F', 'F')) {
return false;
}
return true;
}
#pragma mark -
Audio32::Audio32(ResourceManager *resMan) :
_resMan(resMan),
_mixer(g_system->getMixer()),
_handle(),
_mutex(),
_numActiveChannels(0),
_inAudioThread(false),
_globalSampleRate(44100),
_maxAllowedSampleRate(44100),
_globalBitDepth(16),
_maxAllowedBitDepth(16),
_globalNumOutputChannels(2),
_maxAllowedOutputChannels(2),
_preload(0),
_robotAudioPaused(false),
_pausedAtTick(0),
_startedAtTick(0),
_attenuatedMixing(true),
_monitoredChannelIndex(-1),
_monitoredBuffer(nullptr),
_monitoredBufferSize(0),
_numMonitoredSamples(0) {
if (getSciVersion() < SCI_VERSION_3) {
_channels.resize(5);
} else {
_channels.resize(8);
}
_useModifiedAttenuation = false;
if (getSciVersion() == SCI_VERSION_2_1_MIDDLE) {
switch (g_sci->getGameId()) {
case GID_MOTHERGOOSEHIRES:
case GID_PQ4:
case GID_QFG4:
case GID_SQ6:
_useModifiedAttenuation = true;
default:
break;
}
} else if (getSciVersion() == SCI_VERSION_2_1_EARLY && g_sci->getGameId() == GID_KQ7) {
// KQ7 1.51 uses the non-standard attenuation, but 2.00b
// does not, which is strange.
_useModifiedAttenuation = true;
}
_mixer->playStream(Audio::Mixer::kSFXSoundType, &_handle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO, true);
}
Audio32::~Audio32() {
stop(kAllChannels);
_mixer->stopHandle(_handle);
free(_monitoredBuffer);
}
#pragma mark -
#pragma mark AudioStream implementation
int Audio32::writeAudioInternal(Audio::AudioStream *const sourceStream, Audio::RateConverter *const converter, Audio::st_sample_t *targetBuffer, const int numSamples, const Audio::st_volume_t leftVolume, const Audio::st_volume_t rightVolume, const bool loop) {
int samplesToRead = numSamples;
// The parent rate converter will request N * 2
// samples from this `readBuffer` call, because
// we tell it that we send stereo output, but
// the source stream we're mixing in may be
// mono, in which case we need to request half
// as many samples from the mono stream and let
// the converter double them for stereo output
if (!sourceStream->isStereo()) {
samplesToRead >>= 1;
}
int samplesWritten = 0;
do {
if (loop && sourceStream->endOfStream()) {
Audio::RewindableAudioStream *rewindableStream = dynamic_cast<Audio::RewindableAudioStream *>(sourceStream);
rewindableStream->rewind();
}
const int loopSamplesWritten = converter->flow(*sourceStream, targetBuffer, samplesToRead, leftVolume, rightVolume);
if (loopSamplesWritten == 0) {
break;
}
samplesToRead -= loopSamplesWritten;
samplesWritten += loopSamplesWritten;
targetBuffer += loopSamplesWritten << 1;
} while (loop && samplesToRead > 0);
if (!sourceStream->isStereo()) {
samplesWritten <<= 1;
}
return samplesWritten;
}
// In earlier versions of SCI32 engine, audio mixing is
// split into three different functions.
//
// The first function is called from the main game thread in
// AsyncEventCheck; later versions of SSCI also call it when
// getting the playback position. This function is
// responsible for cleaning up finished channels and
// filling active channel buffers with decompressed audio
// matching the hardware output audio format so they can
// just be copied into the main DAC buffer directly later.
//
// The second function is called by the audio hardware when
// the DAC buffer needs to be filled, and by `play` when
// there is only one active sample (so it can just blow away
// whatever was already in the DAC buffer). It merges all
// active channels into the DAC buffer and then updates the
// offset into the DAC buffer.
//
// Finally, a third function is called by the second
// function, and it actually puts data into the DAC buffer,
// performing volume, distortion, and balance adjustments.
//
// Since we only have one callback from the audio thread,
// and should be able to do all audio processing in
// real time, and we have streams, and we do not need to
// completely fill the audio buffer, the functionality of
// all these original functions is combined here and
// simplified.
int Audio32::readBuffer(Audio::st_sample_t *buffer, const int numSamples) {
Common::StackLock lock(_mutex);
if (_pausedAtTick != 0 || _numActiveChannels == 0) {
return 0;
}
// ResourceManager is not thread-safe so we need to
// avoid calling into it from the audio thread, but at
// the same time we need to be able to clear out any
// finished channels on a regular basis
_inAudioThread = true;
freeUnusedChannels();
// The caller of `readBuffer` is a rate converter,
// which reuses (without clearing) an intermediate
// buffer, so we need to zero the intermediate buffer
// to prevent mixing into audio data from the last
// callback.
memset(buffer, 0, numSamples * sizeof(Audio::st_sample_t));
// This emulates the attenuated mixing mode of SSCI
// engine, which reduces the volume of the target
// buffer when each new channel is mixed in.
// Instead of manipulating the content of the target
// buffer when mixing (which would either require
// modification of RateConverter or an expensive second
// pass against the entire target buffer), we just
// scale the volume for each channel in advance, with
// the earliest (lowest) channel having the highest
// amount of attenuation (lowest volume).
uint8 attenuationAmount;
uint8 attenuationStepAmount;
if (_useModifiedAttenuation) {
// channel | divisor
// 0 | 0 (>> 0)
// 1 | 4 (>> 2)
// 2 | 8...
attenuationAmount = _numActiveChannels * 2;
attenuationStepAmount = 2;
} else {
// channel | divisor
// 0 | 2 (>> 1)
// 1 | 4 (>> 2)
// 2 | 6...
if (_monitoredChannelIndex == -1 && _numActiveChannels > 1) {
attenuationAmount = _numActiveChannels + 1;
attenuationStepAmount = 1;
} else {
attenuationAmount = 0;
attenuationStepAmount = 0;
}
}
int maxSamplesWritten = 0;
for (int16 channelIndex = 0; channelIndex < _numActiveChannels; ++channelIndex) {
attenuationAmount -= attenuationStepAmount;
const AudioChannel &channel = getChannel(channelIndex);
if (channel.pausedAtTick || (channel.robot && _robotAudioPaused)) {
continue;
}
// Channel finished fading and had the
// stopChannelOnFade flag set, so no longer exists
if (channel.fadeStartTick && processFade(channelIndex)) {
--channelIndex;
continue;
}
if (channel.robot) {
if (channel.stream->endOfStream()) {
stop(channelIndex--);
} else {
const int channelSamplesWritten = writeAudioInternal(channel.stream, channel.converter, buffer, numSamples, kMaxVolume, kMaxVolume, channel.loop);
if (channelSamplesWritten > maxSamplesWritten) {
maxSamplesWritten = channelSamplesWritten;
}
}
continue;
}
Audio::st_volume_t leftVolume, rightVolume;
if (channel.pan == -1 || !isStereo()) {
leftVolume = rightVolume = channel.volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume;
} else {
// TODO: This should match the SCI3 algorithm,
// which seems to halve the volume of each
// channel when centered; is this intended?
leftVolume = channel.volume * (100 - channel.pan) / 100 * Audio::Mixer::kMaxChannelVolume / kMaxVolume;
rightVolume = channel.volume * channel.pan / 100 * Audio::Mixer::kMaxChannelVolume / kMaxVolume;
}
if (_monitoredChannelIndex == -1 && _attenuatedMixing) {
leftVolume >>= attenuationAmount;
rightVolume >>= attenuationAmount;
}
if (channelIndex == _monitoredChannelIndex) {
const size_t bufferSize = numSamples * sizeof(Audio::st_sample_t);
if (_monitoredBufferSize < bufferSize) {
_monitoredBuffer = (Audio::st_sample_t *)realloc(_monitoredBuffer, bufferSize);
_monitoredBufferSize = bufferSize;
}
memset(_monitoredBuffer, 0, _monitoredBufferSize);
_numMonitoredSamples = writeAudioInternal(channel.stream, channel.converter, _monitoredBuffer, numSamples, leftVolume, rightVolume, channel.loop);
Audio::st_sample_t *sourceBuffer = _monitoredBuffer;
Audio::st_sample_t *targetBuffer = buffer;
const Audio::st_sample_t *const end = _monitoredBuffer + _numMonitoredSamples;
while (sourceBuffer != end) {
Audio::clampedAdd(*targetBuffer++, *sourceBuffer++);
}
if (_numMonitoredSamples > maxSamplesWritten) {
maxSamplesWritten = _numMonitoredSamples;
}
} else if (!channel.stream->endOfStream() || channel.loop) {
if (_monitoredChannelIndex != -1) {
// Audio that is not on the monitored channel is silent
// when the monitored channel is active, but the stream still
// needs to be read in order to ensure that sound effects sync
// up once the monitored channel is turned off. The easiest
// way to guarantee this is to just do the normal channel read,
// but set the channel volume to zero so nothing is mixed in
leftVolume = rightVolume = 0;
}
const int channelSamplesWritten = writeAudioInternal(channel.stream, channel.converter, buffer, numSamples, leftVolume, rightVolume, channel.loop);
if (channelSamplesWritten > maxSamplesWritten) {
maxSamplesWritten = channelSamplesWritten;
}
}
}
_inAudioThread = false;
return maxSamplesWritten;
}
#pragma mark -
#pragma mark Channel management
int16 Audio32::findChannelByArgs(int argc, const reg_t *argv, const int startIndex, const reg_t soundNode) const {
// NOTE: argc/argv are already reduced by one in our engine because
// this call is always made from a subop, so no reduction for the
// subop is made in this function. SSCI takes extra steps to skip
// the subop argument.
argc -= startIndex;
if (argc <= 0) {
return kAllChannels;
}
Common::StackLock lock(_mutex);
if (_numActiveChannels == 0) {
return kNoExistingChannel;
}
ResourceId searchId;
if (argc < 5) {
searchId = ResourceId(kResourceTypeAudio, argv[startIndex].toUint16());
} else {
searchId = ResourceId(
kResourceTypeAudio36,
argv[startIndex].toUint16(),
argv[startIndex + 1].toUint16(),
argv[startIndex + 2].toUint16(),
argv[startIndex + 3].toUint16(),
argv[startIndex + 4].toUint16()
);
}
return findChannelById(searchId, soundNode);
}
int16 Audio32::findChannelById(const ResourceId resourceId, const reg_t soundNode) const {
Common::StackLock lock(_mutex);
if (_numActiveChannels == 0) {
return kNoExistingChannel;
}
if (resourceId.getType() == kResourceTypeAudio) {
for (int16 i = 0; i < _numActiveChannels; ++i) {
const AudioChannel channel = _channels[i];
if (
channel.id == resourceId &&
(soundNode.isNull() || soundNode == channel.soundNode)
) {
return i;
}
}
} else if (resourceId.getType() == kResourceTypeAudio36) {
for (int16 i = 0; i < _numActiveChannels; ++i) {
const AudioChannel &candidate = getChannel(i);
if (!candidate.robot && candidate.id == resourceId) {
return i;
}
}
} else {
error("Audio32::findChannelById: Unknown resource type %d", resourceId.getType());
}
return kNoExistingChannel;
}
void Audio32::freeUnusedChannels() {
Common::StackLock lock(_mutex);
for (int channelIndex = 0; channelIndex < _numActiveChannels; ++channelIndex) {
const AudioChannel &channel = getChannel(channelIndex);
if (!channel.robot && channel.stream->endOfStream()) {
if (channel.loop) {
dynamic_cast<Audio::SeekableAudioStream *>(channel.stream)->rewind();
} else {
stop(channelIndex--);
}
}
}
if (!_inAudioThread) {
unlockResources();
}
}
void Audio32::freeChannel(const int16 channelIndex) {
// The original engine did this:
// 1. Unlock memory-cached resource, if one existed
// 2. Close patched audio file descriptor, if one existed
// 3. Free decompression memory buffer, if one existed
// 4. Clear monitored memory buffer, if one existed
Common::StackLock lock(_mutex);
AudioChannel &channel = getChannel(channelIndex);
// Robots have no corresponding resource to free
if (channel.robot) {
delete channel.stream;
channel.stream = nullptr;
channel.robot = false;
} else {
// We cannot unlock resources from the audio thread
// because ResourceManager is not thread-safe; instead,
// we just record that the resource needs unlocking and
// unlock it whenever we are on the main thread again
if (_inAudioThread) {
_resourcesToUnlock.push_back(channel.resource);
} else {
_resMan->unlockResource(channel.resource);
}
channel.resource = nullptr;
delete channel.stream;
channel.stream = nullptr;
delete channel.resourceStream;
channel.resourceStream = nullptr;
}
delete channel.converter;
channel.converter = nullptr;
if (_monitoredChannelIndex == channelIndex) {
_monitoredChannelIndex = -1;
}
}
void Audio32::unlockResources() {
Common::StackLock lock(_mutex);
assert(!_inAudioThread);
for (UnlockList::const_iterator it = _resourcesToUnlock.begin(); it != _resourcesToUnlock.end(); ++it) {
_resMan->unlockResource(*it);
}
_resourcesToUnlock.clear();
}
#pragma mark -
#pragma mark Script compatibility
void Audio32::setSampleRate(uint16 rate) {
if (rate > _maxAllowedSampleRate) {
rate = _maxAllowedSampleRate;
}
_globalSampleRate = rate;
}
void Audio32::setBitDepth(uint8 depth) {
if (depth > _maxAllowedBitDepth) {
depth = _maxAllowedBitDepth;
}
_globalBitDepth = depth;
}
void Audio32::setNumOutputChannels(int16 numChannels) {
if (numChannels > _maxAllowedOutputChannels) {
numChannels = _maxAllowedOutputChannels;
}
_globalNumOutputChannels = numChannels;
}
#pragma mark -
#pragma mark Robot
int16 Audio32::findRobotChannel() const {
Common::StackLock lock(_mutex);
for (int16 i = 0; i < _numActiveChannels; ++i) {
if (_channels[i].robot) {
return i;
}
}
return kNoExistingChannel;
}
bool Audio32::playRobotAudio(const RobotAudioStream::RobotAudioPacket &packet) {
// Stop immediately
if (packet.dataSize == 0) {
warning("Stopping robot stream by zero-length packet");
return stopRobotAudio();
}
// Flush and then stop
if (packet.dataSize == -1) {
warning("Stopping robot stream by negative-length packet");
return finishRobotAudio();
}
Common::StackLock lock(_mutex);
int16 channelIndex = findRobotChannel();
bool isNewChannel = false;
if (channelIndex == kNoExistingChannel) {
if (_numActiveChannels == _channels.size()) {
return false;
}
channelIndex = _numActiveChannels++;
isNewChannel = true;
}
AudioChannel &channel = getChannel(channelIndex);
if (isNewChannel) {
channel.id = ResourceId();
channel.resource = nullptr;
channel.loop = false;
channel.robot = true;
channel.fadeStartTick = 0;
channel.pausedAtTick = 0;
channel.soundNode = NULL_REG;
channel.volume = kMaxVolume;
// TODO: SCI3 introduces stereo audio
channel.pan = -1;
channel.converter = Audio::makeRateConverter(RobotAudioStream::kRobotSampleRate, getRate(), false);
// The RobotAudioStream buffer size is
// ((bytesPerSample * channels * sampleRate * 2000ms) / 1000ms) & ~3
// where bytesPerSample = 2, channels = 1, and sampleRate = 22050
channel.stream = new RobotAudioStream(88200);
_robotAudioPaused = false;
if (_numActiveChannels == 1) {
_startedAtTick = g_sci->getTickCount();
}
}
return static_cast<RobotAudioStream *>(channel.stream)->addPacket(packet);
}
bool Audio32::queryRobotAudio(RobotAudioStream::StreamState &status) const {
Common::StackLock lock(_mutex);
const int16 channelIndex = findRobotChannel();
if (channelIndex == kNoExistingChannel) {
status.bytesPlaying = 0;
return false;
}
status = static_cast<RobotAudioStream *>(getChannel(channelIndex).stream)->getStatus();
return true;
}
bool Audio32::finishRobotAudio() {
Common::StackLock lock(_mutex);
const int16 channelIndex = findRobotChannel();
if (channelIndex == kNoExistingChannel) {
return false;
}
static_cast<RobotAudioStream *>(getChannel(channelIndex).stream)->finish();
return true;
}
bool Audio32::stopRobotAudio() {
Common::StackLock lock(_mutex);
const int16 channelIndex = findRobotChannel();
if (channelIndex == kNoExistingChannel) {
return false;
}
stop(channelIndex);
return true;
}
#pragma mark -
#pragma mark Playback
uint16 Audio32::play(int16 channelIndex, const ResourceId resourceId, const bool autoPlay, const bool loop, const int16 volume, const reg_t soundNode, const bool monitor) {
Common::StackLock lock(_mutex);
freeUnusedChannels();
if (channelIndex != kNoExistingChannel) {
AudioChannel &channel = getChannel(channelIndex);
Audio::SeekableAudioStream *stream = dynamic_cast<Audio::SeekableAudioStream *>(channel.stream);
if (channel.pausedAtTick) {
resume(channelIndex);
return MIN(65534, 1 + stream->getLength().msecs() * 60 / 1000);
}
warning("Tried to resume channel %s that was not paused", channel.id.toString().c_str());
return MIN(65534, 1 + stream->getLength().msecs() * 60 / 1000);
}
if (_numActiveChannels == _channels.size()) {
warning("Audio mixer is full when trying to play %s", resourceId.toString().c_str());
return 0;
}
// NOTE: SCI engine itself normally searches in this order:
//
// For Audio36:
//
// 1. First, request a FD using Audio36 name and use it as the
// source FD for reading the audio resource data.
// 2a. If the returned FD is -1, or equals the audio map, or
// equals the audio bundle, try to get the offset of the
// data from the audio map, using the Audio36 name.
//
// If the returned offset is -1, this is not a valid resource;
// return 0. Otherwise, set the read offset for the FD to the
// returned offset.
// 2b. Otherwise, use the FD as-is (it is a patch file), with zero
// offset, and record it separately so it can be closed later.
//
// For plain audio:
//
// 1. First, request an Audio resource from the resource cache. If
// one does not exist, make the same request for a Wave resource.
// 2a. If an audio resource was discovered, record its memory ID
// and clear the streaming FD
// 2b. Otherwise, request an Audio FD. If one does not exist, make
// the same request for a Wave FD. If neither exist, this is not
// a valid resource; return 0. Otherwise, use the returned FD as
// the streaming ID and set the memory ID to null.
//
// Once these steps are complete, the audio engine either has a file
// descriptor + offset that it can use to read streamed audio, or it
// has a memory ID that it can use to read cached audio.
//
// Here in ScummVM we just ask the resource manager to give us the
// resource and we get a seekable stream.
// TODO: This should be fixed to use streaming, which means
// fixing the resource manager to allow streaming, which means
// probably rewriting a bunch of the resource manager.
Resource *resource = _resMan->findResource(resourceId, true);
if (resource == nullptr) {
return 0;
}
channelIndex = _numActiveChannels++;
AudioChannel &channel = getChannel(channelIndex);
channel.id = resourceId;
channel.resource = resource;
channel.loop = loop;
channel.robot = false;
channel.fadeStartTick = 0;
channel.soundNode = soundNode;
channel.volume = volume < 0 || volume > kMaxVolume ? (int)kMaxVolume : volume;
// TODO: SCI3 introduces stereo audio
channel.pan = -1;
if (monitor) {
_monitoredChannelIndex = channelIndex;
}
Common::MemoryReadStream headerStream(resource->_header, resource->_headerSize, DisposeAfterUse::NO);
Common::SeekableReadStream *dataStream = channel.resourceStream = resource->makeStream();
if (detectSolAudio(headerStream)) {
channel.stream = makeSOLStream(&headerStream, dataStream, DisposeAfterUse::NO);
} else if (detectWaveAudio(*dataStream)) {
channel.stream = Audio::makeWAVStream(dataStream, DisposeAfterUse::NO);
} else {
byte flags = Audio::FLAG_LITTLE_ENDIAN;
if (_globalBitDepth == 16) {
flags |= Audio::FLAG_16BITS;
} else {
flags |= Audio::FLAG_UNSIGNED;
}
if (_globalNumOutputChannels == 2) {
flags |= Audio::FLAG_STEREO;
}
channel.stream = Audio::makeRawStream(dataStream, _globalSampleRate, flags, DisposeAfterUse::NO);
}
channel.converter = Audio::makeRateConverter(channel.stream->getRate(), getRate(), channel.stream->isStereo(), false);
// NOTE: SCI engine sets up a decompression buffer here for the audio
// stream, plus writes information about the sample to the channel to
// convert to the correct hardware output format, and allocates the
// monitoring buffer to match the bitrate/samplerate/channels of the
// original stream. We do not need to do any of these things since we
// use audio streams, and allocate and fill the monitoring buffer
// when reading audio data from the stream.
channel.duration = /* round up */ 1 + (dynamic_cast<Audio::SeekableAudioStream *>(channel.stream)->getLength().msecs() * 60 / 1000);
const uint32 now = g_sci->getTickCount();
channel.pausedAtTick = autoPlay ? 0 : now;
channel.startedAtTick = now;
if (_numActiveChannels == 1) {
_startedAtTick = now;
}
return channel.duration;
}
bool Audio32::resume(const int16 channelIndex) {
if (channelIndex == kNoExistingChannel) {
return false;
}
Common::StackLock lock(_mutex);
const uint32 now = g_sci->getTickCount();
if (channelIndex == kAllChannels) {
// Global pause in SSCI is an extra layer over
// individual channel pauses, so only unpause channels
// if there was not a global pause in place
if (_pausedAtTick == 0) {
return false;
}
for (int i = 0; i < _numActiveChannels; ++i) {
AudioChannel &channel = getChannel(i);
if (!channel.pausedAtTick) {
channel.startedAtTick += now - _pausedAtTick;
}
}
_startedAtTick += now - _pausedAtTick;
_pausedAtTick = 0;
return true;
} else if (channelIndex == kRobotChannel) {
for (int i = 0; i < _numActiveChannels; ++i) {
AudioChannel &channel = getChannel(i);
if (channel.robot) {
channel.startedAtTick += now - channel.pausedAtTick;
channel.pausedAtTick = 0;
return true;
}
}
} else {
AudioChannel &channel = getChannel(channelIndex);
if (channel.pausedAtTick) {
channel.startedAtTick += now - channel.pausedAtTick;
channel.pausedAtTick = 0;
return true;
}
}
return false;
}
bool Audio32::pause(const int16 channelIndex) {
if (channelIndex == kNoExistingChannel) {
return false;
}
Common::StackLock lock(_mutex);
const uint32 now = g_sci->getTickCount();
bool didPause = false;
if (channelIndex == kAllChannels) {
if (_pausedAtTick == 0) {
_pausedAtTick = now;
didPause = true;
}
} else if (channelIndex == kRobotChannel) {
_robotAudioPaused = true;
for (int16 i = 0; i < _numActiveChannels; ++i) {
AudioChannel &channel = getChannel(i);
if (channel.robot) {
channel.pausedAtTick = now;
}
}
// NOTE: The actual engine returns false here regardless of whether
// or not channels were paused
} else {
AudioChannel &channel = getChannel(channelIndex);
if (channel.pausedAtTick == 0) {
channel.pausedAtTick = now;
didPause = true;
}
}
return didPause;
}
int16 Audio32::stop(const int16 channelIndex) {
Common::StackLock lock(_mutex);
const int16 oldNumChannels = _numActiveChannels;
if (channelIndex == kNoExistingChannel || oldNumChannels == 0) {
return 0;
}
if (channelIndex == kAllChannels) {
for (int i = 0; i < oldNumChannels; ++i) {
freeChannel(i);
}
_numActiveChannels = 0;
} else {
freeChannel(channelIndex);
--_numActiveChannels;
for (int i = channelIndex; i < oldNumChannels - 1; ++i) {
_channels[i] = _channels[i + 1];
if (i + 1 == _monitoredChannelIndex) {
_monitoredChannelIndex = i;
}
}
}
// NOTE: SSCI stops the DSP interrupt and frees the
// global decompression buffer here if there are no
// more active channels
return oldNumChannels;
}
int16 Audio32::getPosition(const int16 channelIndex) const {
Common::StackLock lock(_mutex);
if (channelIndex == kNoExistingChannel || _numActiveChannels == 0) {
return -1;
}
// NOTE: SSCI treats this as an unsigned short except for
// when the value is 65535, then it treats it as signed
int position = -1;
const uint32 now = g_sci->getTickCount();
// NOTE: The original engine also queried the audio driver to see whether
// it thought that there was audio playback occurring via driver opcode 9
if (channelIndex == kAllChannels) {
if (_pausedAtTick) {
position = _pausedAtTick - _startedAtTick;
} else {
position = now - _startedAtTick;
}
} else {
const AudioChannel &channel = getChannel(channelIndex);
if (channel.pausedAtTick) {
position = channel.pausedAtTick - channel.startedAtTick;
} else if (_pausedAtTick) {
position = _pausedAtTick - channel.startedAtTick;
} else {
position = now - channel.startedAtTick;
}
}
return MIN(position, 65534);
}
void Audio32::setLoop(const int16 channelIndex, const bool loop) {
Common::StackLock lock(_mutex);
if (channelIndex < 0 || channelIndex >= _numActiveChannels) {
return;
}
AudioChannel &channel = getChannel(channelIndex);
channel.loop = loop;
}
reg_t Audio32::kernelPlay(const bool autoPlay, const int argc, const reg_t *const argv) {
if (argc == 0) {
return make_reg(0, _numActiveChannels);
}
const int16 channelIndex = findChannelByArgs(argc, argv, 0, NULL_REG);
ResourceId resourceId;
bool loop;
int16 volume;
bool monitor = false;
reg_t soundNode = NULL_REG;
if (argc >= 5) {
resourceId = ResourceId(kResourceTypeAudio36, argv[0].toUint16(), argv[1].toUint16(), argv[2].toUint16(), argv[3].toUint16(), argv[4].toUint16());
if (argc < 6 || argv[5].toSint16() == 1) {
loop = false;
} else {
// NOTE: Uses -1 for infinite loop. Presumably the
// engine was supposed to allow counter loops at one
// point, but ended up only using loop as a boolean.
loop = (bool)argv[5].toSint16();
}
if (argc < 7 || argv[6].toSint16() < 0 || argv[6].toSint16() > Audio32::kMaxVolume) {
volume = Audio32::kMaxVolume;
if (argc >= 7) {
monitor = true;
}
} else {
volume = argv[6].toSint16();
}
} else {
resourceId = ResourceId(kResourceTypeAudio, argv[0].toUint16());
if (argc < 2 || argv[1].toSint16() == 1) {
loop = false;
} else {
loop = (bool)argv[1].toSint16();
}
// TODO: SCI3 uses the 0x80 bit as a flag to
// indicate "priority channel", but the volume is clamped
// in this call to 0x7F so that flag never makes it into
// the audio subsystem
if (argc < 3 || argv[2].toSint16() < 0 || argv[2].toSint16() > Audio32::kMaxVolume) {
volume = Audio32::kMaxVolume;
if (argc >= 3) {
monitor = true;
}
} else {
volume = argv[2].toSint16();
}
soundNode = argc == 4 ? argv[3] : NULL_REG;
}
return make_reg(0, play(channelIndex, resourceId, autoPlay, loop, volume, soundNode, monitor));
}
#pragma mark -
#pragma mark Effects
int16 Audio32::getVolume(const int16 channelIndex) const {
if (channelIndex < 0 || channelIndex >= _numActiveChannels) {
return _mixer->getChannelVolume(_handle) * kMaxVolume / Audio::Mixer::kMaxChannelVolume;
}
Common::StackLock lock(_mutex);
return getChannel(channelIndex).volume;
}
void Audio32::setVolume(const int16 channelIndex, int16 volume) {
volume = MIN((int16)kMaxVolume, volume);
if (channelIndex == kAllChannels) {
ConfMan.setInt("sfx_volume", volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume);
ConfMan.setInt("speech_volume", volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume);
_mixer->setChannelVolume(_handle, volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume);
g_engine->syncSoundSettings();
} else if (channelIndex != kNoExistingChannel) {
Common::StackLock lock(_mutex);
getChannel(channelIndex).volume = volume;
}
}
bool Audio32::fadeChannel(const int16 channelIndex, const int16 targetVolume, const int16 speed, const int16 steps, const bool stopAfterFade) {
Common::StackLock lock(_mutex);
if (channelIndex < 0 || channelIndex >= _numActiveChannels) {
return false;
}
AudioChannel &channel = getChannel(channelIndex);
if (channel.id.getType() != kResourceTypeAudio || channel.volume == targetVolume) {
return false;
}
if (steps && speed) {
channel.fadeStartTick = g_sci->getTickCount();
channel.fadeStartVolume = channel.volume;
channel.fadeTargetVolume = targetVolume;
channel.fadeDuration = speed * steps;
channel.stopChannelOnFade = stopAfterFade;
} else {
setVolume(channelIndex, targetVolume);
}
return true;
}
bool Audio32::processFade(const int16 channelIndex) {
Common::StackLock lock(_mutex);
AudioChannel &channel = getChannel(channelIndex);
if (channel.fadeStartTick) {
const uint32 fadeElapsed = g_sci->getTickCount() - channel.fadeStartTick;
if (fadeElapsed > channel.fadeDuration) {
channel.fadeStartTick = 0;
if (channel.stopChannelOnFade) {
stop(channelIndex);
return true;
} else {
setVolume(channelIndex, channel.fadeTargetVolume);
}
return false;
}
int volume;
if (channel.fadeStartVolume > channel.fadeTargetVolume) {
volume = channel.fadeStartVolume - fadeElapsed * (channel.fadeStartVolume - channel.fadeTargetVolume) / channel.fadeDuration;
} else {
volume = channel.fadeStartVolume + fadeElapsed * (channel.fadeTargetVolume - channel.fadeStartVolume) / channel.fadeDuration;
}
setVolume(channelIndex, volume);
return false;
}
return false;
}
#pragma mark -
#pragma mark Signal monitoring
bool Audio32::hasSignal() const {
Common::StackLock lock(_mutex);
if (_monitoredChannelIndex == -1) {
return false;
}
const Audio::st_sample_t *buffer = _monitoredBuffer;
const Audio::st_sample_t *const end = _monitoredBuffer + _numMonitoredSamples;
while (buffer != end) {
const Audio::st_sample_t sample = *buffer++;
if (sample > 1280 || sample < -1280) {
return true;
}
}
return false;
}
} // End of namespace Sci
|