1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
/*
* This code is based on Broken Sword 2.5 engine
*
* Copyright (c) Malte Thiesen, Daniel Queteschiner and Michael Elsdoerfer
*
* Licensed under GNU GPL v2
*
*/
#include "sword25/kernel/kernel.h"
#include "sword25/kernel/inputpersistenceblock.h"
#include "sword25/kernel/outputpersistenceblock.h"
#include "sword25/math/walkregion.h"
#include "sword25/math/line.h"
namespace Sword25 {
static const int Infinity = 0x7fffffff;
WalkRegion::WalkRegion() {
_type = RT_WALKREGION;
}
WalkRegion::WalkRegion(InputPersistenceBlock &reader, uint handle) :
Region(reader, handle) {
_type = RT_WALKREGION;
unpersist(reader);
}
WalkRegion::~WalkRegion() {
}
bool WalkRegion::init(const Polygon &contour, const Common::Array<Polygon> *pHoles) {
// Default initialisation of the region
if (!Region::init(contour, pHoles)) return false;
// Prepare structures for pathfinding
initNodeVector();
computeVisibilityMatrix();
// Signal success
return true;
}
bool WalkRegion::queryPath(Vertex startPoint, Vertex endPoint, BS_Path &path) {
assert(path.empty());
// If the start and finish are identical, no path can be found trivially
if (startPoint == endPoint)
return true;
// Ensure that the start and finish are valid and find new start points if either
// are outside the polygon
if (!checkAndPrepareStartAndEnd(startPoint, endPoint)) return false;
// If between the start and point a line of sight exists, then it can be returned.
if (isLineOfSight(startPoint, endPoint)) {
path.push_back(startPoint);
path.push_back(endPoint);
return true;
}
return findPath(startPoint, endPoint, path);
}
struct DijkstraNode {
typedef Common::Array<DijkstraNode> Container;
typedef Container::iterator Iter;
typedef Container::const_iterator ConstIter;
DijkstraNode() : parentIter(), cost(Infinity), chosen(false) {}
ConstIter parentIter;
int cost;
bool chosen;
};
static void initDijkstraNodes(DijkstraNode::Container &dijkstraNodes, const Region ®ion,
const Vertex &start, const Common::Array<Vertex> &nodes) {
// Allocate sufficient space in the array
dijkstraNodes.resize(nodes.size());
// Initialise all the nodes which are visible from the starting node
DijkstraNode::Iter dijkstraIter = dijkstraNodes.begin();
for (Common::Array<Vertex>::const_iterator nodesIter = nodes.begin();
nodesIter != nodes.end(); nodesIter++, dijkstraIter++) {
(*dijkstraIter).parentIter = dijkstraNodes.end();
if (region.isLineOfSight(*nodesIter, start))(*dijkstraIter).cost = (*nodesIter).distance(start);
}
assert(dijkstraIter == dijkstraNodes.end());
}
static DijkstraNode::Iter chooseClosestNode(DijkstraNode::Container &nodes) {
DijkstraNode::Iter closestNodeInter = nodes.end();
int minCost = Infinity;
for (DijkstraNode::Iter iter = nodes.begin(); iter != nodes.end(); iter++) {
if (!(*iter).chosen && (*iter).cost < minCost) {
minCost = (*iter).cost;
closestNodeInter = iter;
}
}
return closestNodeInter;
}
static void relaxNodes(DijkstraNode::Container &nodes,
const Common::Array< Common::Array<int> > &visibilityMatrix,
const DijkstraNode::ConstIter &curNodeIter) {
// All the successors of the current node that have not been chosen will be
// inserted into the boundary node list, and the cost will be updated if
// a shorter path has been found to them.
int curNodeIndex = curNodeIter - nodes.begin();
for (uint i = 0; i < nodes.size(); i++) {
int cost = visibilityMatrix[curNodeIndex][i];
if (!nodes[i].chosen && cost != Infinity) {
int totalCost = (*curNodeIter).cost + cost;
if (totalCost < nodes[i].cost) {
nodes[i].parentIter = curNodeIter;
nodes[i].cost = totalCost;
}
}
}
}
static void relaxEndPoint(const Vertex &curNodePos,
const DijkstraNode::ConstIter &curNodeIter,
const Vertex &endPointPos,
DijkstraNode &endPoint,
const Region ®ion) {
if (region.isLineOfSight(curNodePos, endPointPos)) {
int totalCost = (*curNodeIter).cost + curNodePos.distance(endPointPos);
if (totalCost < endPoint.cost) {
endPoint.parentIter = curNodeIter;
endPoint.cost = totalCost;
}
}
}
template<class T>
void reverseArray(Common::Array<T> &arr) {
const uint size = arr.size();
if (size < 2)
return;
for (uint i = 0; i <= (size / 2 - 1); ++i) {
SWAP(arr[i], arr[size - i - 1]);
}
}
bool WalkRegion::findPath(const Vertex &start, const Vertex &end, BS_Path &path) const {
// This is an implementation of Dijkstra's algorithm
// Initialise edge node list
DijkstraNode::Container dijkstraNodes;
initDijkstraNodes(dijkstraNodes, *this, start, _nodes);
// The end point is treated separately, since it does not exist in the visibility graph
DijkstraNode endPoint;
// Since a node is selected each round from the node list, and can never be selected again
// after that, the maximum number of loop iterations is limited by the number of nodes
for (uint i = 0; i < _nodes.size(); i++) {
// Determine the nearest edge node in the node list
DijkstraNode::Iter nodeInter = chooseClosestNode(dijkstraNodes);
// If no free nodes are absent from the edge node list, there is no path from start
// to end node. This case should never occur, since the number of loop passes is
// limited, but etter safe than sorry
if (nodeInter == dijkstraNodes.end())
return false;
// If the destination point is closer than the point cost, scan can stop
(*nodeInter).chosen = true;
if (endPoint.cost <= (*nodeInter).cost) {
// Insert the end point in the list
path.push_back(end);
// The list is done in reverse order and inserted into the path
DijkstraNode::ConstIter curNode = endPoint.parentIter;
while (curNode != dijkstraNodes.end()) {
assert((*curNode).chosen);
path.push_back(_nodes[curNode - dijkstraNodes.begin()]);
curNode = (*curNode).parentIter;
}
// The starting point is inserted into the path
path.push_back(start);
// The nodes of the path must be untwisted, as they were extracted in reverse order.
// This step could be saved if the path from end to the beginning was desired
reverseArray<Vertex>(path);
return true;
}
// Relaxation step for nodes of the graph, and perform the end nodes
relaxNodes(dijkstraNodes, _visibilityMatrix, nodeInter);
relaxEndPoint(_nodes[nodeInter - dijkstraNodes.begin()], nodeInter, end, endPoint, *this);
}
// If the loop has been completely run through, all the nodes have been chosen, and still
// no path was found. There is therefore no path available
return false;
}
void WalkRegion::initNodeVector() {
// Empty the Node list
_nodes.clear();
// Determine the number of nodes
int nodeCount = 0;
{
for (uint i = 0; i < _polygons.size(); i++)
nodeCount += _polygons[i].vertexCount;
}
// Knoten-Vector f�llen
_nodes.reserve(nodeCount);
{
for (uint j = 0; j < _polygons.size(); j++)
for (int i = 0; i < _polygons[j].vertexCount; i++)
_nodes.push_back(_polygons[j].vertices[i]);
}
}
void WalkRegion::computeVisibilityMatrix() {
// Initialise visibility matrix
_visibilityMatrix = Common::Array< Common::Array <int> >();
for (uint idx = 0; idx < _nodes.size(); ++idx) {
Common::Array<int> arr;
for (uint idx2 = 0; idx2 < _nodes.size(); ++idx2)
arr.push_back(Infinity);
_visibilityMatrix.push_back(arr);
}
// Calculate visibility been vertecies
for (uint j = 0; j < _nodes.size(); ++j) {
for (uint i = j; i < _nodes.size(); ++i) {
if (isLineOfSight(_nodes[i], _nodes[j])) {
// There is a line of sight, so save the distance between the two
int distance = _nodes[i].distance(_nodes[j]);
_visibilityMatrix[i][j] = distance;
_visibilityMatrix[j][i] = distance;
} else {
// There is no line of sight, so save Infinity as the distance
_visibilityMatrix[i][j] = Infinity;
_visibilityMatrix[j][i] = Infinity;
}
}
}
}
bool WalkRegion::checkAndPrepareStartAndEnd(Vertex &start, Vertex &end) const {
if (!isPointInRegion(start)) {
Vertex newStart = findClosestRegionPoint(start);
// Check to make sure the point is really in the region. If not, stop with an error
if (!isPointInRegion(newStart)) {
error("Constructed startpoint ((%d,%d) from (%d,%d)) is not inside the region.",
newStart.x, newStart.y,
start.x, start.y);
return false;
}
start = newStart;
}
// If the destination is outside the region, a point is determined that is within the region,
// and that is used as an endpoint instead
if (!isPointInRegion(end)) {
Vertex newEnd = findClosestRegionPoint(end);
// Make sure that the determined point is really within the region
if (!isPointInRegion(newEnd)) {
error("Constructed endpoint ((%d,%d) from (%d,%d)) is not inside the region.",
newEnd.x, newEnd.y,
end.x, end.y);
return false;
}
end = newEnd;
}
// Signal success
return true;
}
void WalkRegion::setPos(int x, int y) {
// Calculate the difference between old and new position
Vertex Delta(x - _position.x, y - _position.y);
// Move all the nodes
for (uint i = 0; i < _nodes.size(); i++)
_nodes[i] += Delta;
// Move regions
Region::setPos(x, y);
}
bool WalkRegion::persist(OutputPersistenceBlock &writer) {
bool result = true;
// Persist the parent region
result &= Region::persist(writer);
// Persist the nodes
writer.write(_nodes.size());
Common::Array<Vertex>::const_iterator it = _nodes.begin();
while (it != _nodes.end()) {
writer.write(it->x);
writer.write(it->y);
++it;
}
// Persist the visibility matrix
writer.write(_visibilityMatrix.size());
Common::Array< Common::Array<int> >::const_iterator rowIter = _visibilityMatrix.begin();
while (rowIter != _visibilityMatrix.end()) {
writer.write(rowIter->size());
Common::Array<int>::const_iterator colIter = rowIter->begin();
while (colIter != rowIter->end()) {
writer.write(*colIter);
++colIter;
}
++rowIter;
}
return result;
}
bool WalkRegion::unpersist(InputPersistenceBlock &reader) {
bool result = true;
// The parent object was already loaded in the constructor of BS_Region, so at
// this point only the additional data from BS_WalkRegion needs to be loaded
// Node load
uint nodeCount;
reader.read(nodeCount);
_nodes.clear();
_nodes.resize(nodeCount);
Common::Array<Vertex>::iterator it = _nodes.begin();
while (it != _nodes.end()) {
reader.read(it->x);
reader.read(it->y);
++it;
}
// Visibility matrix load
uint rowCount;
reader.read(rowCount);
_visibilityMatrix.clear();
_visibilityMatrix.resize(rowCount);
Common::Array< Common::Array<int> >::iterator rowIter = _visibilityMatrix.begin();
while (rowIter != _visibilityMatrix.end()) {
uint colCount;
reader.read(colCount);
rowIter->resize(colCount);
Common::Array<int>::iterator colIter = rowIter->begin();
while (colIter != rowIter->end()) {
reader.read(*colIter);
++colIter;
}
++rowIter;
}
return result && reader.isGood();
}
} // End of namespace Sword25
|