1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/scummsys.h"
#include "graphics/colormasks.h"
#include "zvision/render_table.h"
#include "zvision/vector2.h"
namespace ZVision {
RenderTable::RenderTable(uint numColumns, uint numRows)
: _numRows(numRows),
_numColumns(numColumns),
_renderState(FLAT) {
assert(numRows != 0 && numColumns != 0);
_internalBuffer = new Vector2[numRows * numColumns];
}
RenderTable::~RenderTable() {
delete[] _internalBuffer;
}
void RenderTable::setRenderState(RenderState newState) {
_renderState = newState;
switch (newState) {
case PANORAMA:
_panoramaOptions.fieldOfView = 27.0f;
_panoramaOptions.linearScale = 0.55f;
_panoramaOptions.reverse = false;
break;
case TILT:
_tiltOptions.fieldOfView = 27.0f;
_tiltOptions.linearScale = 0.55f;
_tiltOptions.reverse = false;
break;
case FLAT:
// Intentionally left empty
break;
}
}
const Common::Point RenderTable::convertWarpedCoordToFlatCoord(const Common::Point &point) {
// If we're outside the range of the RenderTable, no warping is happening. Return the maximum image coords
if (point.x >= (int16)_numColumns || point.y >= (int16)_numRows || point.x < 0 || point.y < 0) {
int16 x = CLIP<int16>(point.x, 0, (int16)_numColumns);
int16 y = CLIP<int16>(point.y, 0, (int16)_numRows);
return Common::Point(x, y);
}
uint32 index = point.y * _numColumns + point.x;
Common::Point newPoint(point);
newPoint.x += _internalBuffer[index].x;
newPoint.y += _internalBuffer[index].y;
return newPoint;
}
uint16 mixTwoRGB(uint16 colorOne, uint16 colorTwo, float percentColorOne) {
assert(percentColorOne < 1.0f);
float rOne = float((colorOne & Graphics::ColorMasks<555>::kRedMask) >> Graphics::ColorMasks<555>::kRedShift);
float rTwo = float((colorTwo & Graphics::ColorMasks<555>::kRedMask) >> Graphics::ColorMasks<555>::kRedShift);
float gOne = float((colorOne & Graphics::ColorMasks<555>::kGreenMask) >> Graphics::ColorMasks<555>::kGreenShift);
float gTwo = float((colorTwo & Graphics::ColorMasks<555>::kGreenMask) >> Graphics::ColorMasks<555>::kGreenShift);
float bOne = float((colorOne & Graphics::ColorMasks<555>::kBlueMask) >> Graphics::ColorMasks<555>::kBlueShift);
float bTwo = float((colorTwo & Graphics::ColorMasks<555>::kBlueMask) >> Graphics::ColorMasks<555>::kBlueShift);
float rFinal = rOne * percentColorOne + rTwo * (1.0f - percentColorOne);
float gFinal = gOne * percentColorOne + gTwo * (1.0f - percentColorOne);
float bFinal = bOne * percentColorOne + bTwo * (1.0f - percentColorOne);
uint16 returnColor = (byte(rFinal + 0.5f) << Graphics::ColorMasks<555>::kRedShift) |
(byte(gFinal + 0.5f) << Graphics::ColorMasks<555>::kGreenShift) |
(byte(bFinal + 0.5f) << Graphics::ColorMasks<555>::kBlueShift);
return returnColor;
}
void RenderTable::mutateImage(uint16 *sourceBuffer, uint16* destBuffer, uint32 destWidth, const Common::Rect &subRect) {
uint32 destOffset = 0;
for (uint32 y = subRect.top; y < subRect.bottom; y++) {
uint32 sourceOffset = y * _numColumns;
for (uint32 x = subRect.left; x < subRect.right; x++) {
uint32 normalizedX = x - subRect.left;
uint32 index = sourceOffset + x;
// RenderTable only stores offsets from the original coordinates
uint32 sourceYIndex = y + _internalBuffer[index].y;
uint32 sourceXIndex = x + _internalBuffer[index].x;
// Clamp the yIndex to the size of the image
sourceYIndex = CLIP<uint32>(sourceYIndex, 0, _numRows - 1);
// Clamp the xIndex to the size of the image
sourceXIndex = CLIP<uint32>(sourceXIndex, 0, _numColumns - 1);
destBuffer[destOffset + normalizedX] = sourceBuffer[sourceYIndex * _numColumns + sourceXIndex];
}
destOffset += destWidth;
}
}
void RenderTable::generateRenderTable() {
switch (_renderState) {
case ZVision::RenderTable::PANORAMA:
generatePanoramaLookupTable();
break;
case ZVision::RenderTable::TILT:
generateTiltLookupTable();
break;
case ZVision::RenderTable::FLAT:
// Intentionally left empty
break;
}
}
void RenderTable::generatePanoramaLookupTable() {
memset(_internalBuffer, 0, _numRows * _numColumns * sizeof(uint16));
float halfWidth = (float)_numColumns / 2.0f;
float halfHeight = (float)_numRows / 2.0f;
float fovInRadians = (_panoramaOptions.fieldOfView * M_PI / 180.0f);
float cylinderRadius = halfHeight / tan(fovInRadians);
for (uint x = 0; x < _numColumns; x++) {
// Add an offset of 0.01 to overcome zero tan/atan issue (vertical line on half of screen)
// Alpha represents the horizontal angle between the viewer at the center of a cylinder and x
float alpha = atan(((float)x - halfWidth + 0.01f) / cylinderRadius);
// To get x in cylinder coordinates, we just need to calculate the arc length
// We also scale it by _panoramaOptions.linearScale
int32 xInCylinderCoords = int32(floor((cylinderRadius * _panoramaOptions.linearScale * alpha) + halfWidth));
float cosAlpha = cos(alpha);
for (uint y = 0; y < _numRows; y++) {
// To calculate y in cylinder coordinates, we can do similar triangles comparison,
// comparing the triangle from the center to the screen and from the center to the edge of the cylinder
int32 yInCylinderCoords = int32(floor(halfHeight + ((float)y - halfHeight) * cosAlpha));
uint32 index = y * _numColumns + x;
// Only store the (x,y) offsets instead of the absolute positions
_internalBuffer[index].x = xInCylinderCoords - x;
_internalBuffer[index].y = yInCylinderCoords - y;
}
}
}
void RenderTable::generateTiltLookupTable() {
float halfWidth = (float)_numColumns / 2.0f;
float halfHeight = (float)_numRows / 2.0f;
float fovInRadians = (_tiltOptions.fieldOfView * M_PI / 180.0f);
float cylinderRadius = halfWidth / tan(fovInRadians);
for (uint y = 0; y < _numRows; y++) {
// Add an offset of 0.01 to overcome zero tan/atan issue (horizontal line on half of screen)
// Alpha represents the vertical angle between the viewer at the center of a cylinder and y
float alpha = atan(((float)y - halfHeight + 0.01f) / cylinderRadius);
// To get y in cylinder coordinates, we just need to calculate the arc length
// We also scale it by _tiltOptions.linearScale
int32 yInCylinderCoords = int32(floor((cylinderRadius * _tiltOptions.linearScale * alpha) + halfHeight));
float cosAlpha = cos(alpha);
uint32 columnIndex = y * _numColumns;
for (uint x = 0; x < _numColumns; x++) {
// To calculate x in cylinder coordinates, we can do similar triangles comparison,
// comparing the triangle from the center to the screen and from the center to the edge of the cylinder
int32 xInCylinderCoords = int32(floor(halfWidth + ((float)x - halfWidth) * cosAlpha));
uint32 index = columnIndex + x;
// Only store the (x,y) offsets instead of the absolute positions
_internalBuffer[index].x = xInCylinderCoords - x;
_internalBuffer[index].y = yInCylinderCoords - y;
}
}
}
void RenderTable::setPanoramaFoV(float fov) {
assert(fov > 0.0f);
_panoramaOptions.fieldOfView = fov;
}
void RenderTable::setPanoramaScale(float scale) {
assert(scale > 0.0f);
_panoramaOptions.linearScale = scale;
}
void RenderTable::setPanoramaReverse(bool reverse) {
_panoramaOptions.reverse = reverse;
}
void RenderTable::setTiltFoV(float fov) {
assert(fov > 0.0f);
_tiltOptions.fieldOfView = fov;
}
void RenderTable::setTiltScale(float scale) {
assert(scale > 0.0f);
_tiltOptions.linearScale = scale;
}
void RenderTable::setTiltReverse(bool reverse) {
_tiltOptions.reverse = reverse;
}
} // End of namespace ZVision
|