1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*/
#include "graphics/dither.h"
#include "common/endian.h"
#include "common/stream.h"
namespace Graphics {
PaletteLUT::PaletteLUT(byte depth, PaletteFormat format) {
assert((depth > 1) && (depth < 9));
// For adjusting depth
_depth1 = depth;
_depth2 = 2 * _depth1;
_shift = 8 - _depth1;
// The table's dimensions
_dim1 = (1 << _depth1);
_dim2 = _dim1 * _dim1;
_dim3 = _dim1 * _dim1 * _dim1;
_format = format;
// What's already built
_got = _dim1;
_gots = new byte[_dim1];
// The lookup table
_lut = new byte[_dim3];
memset(_lutPal, 0, 768);
memset(_realPal, 0, 768);
memset(_gots, 1, _dim1);
}
void PaletteLUT::setPalette(const byte *palette, PaletteFormat format,
byte depth, int transp) {
assert((depth > 1) && (depth < 9));
_transp = transp;
int shift = 8 - depth;
// Checking for the table's and the palette's pixel format
if ((_format == kPaletteRGB) && (format == kPaletteYUV)) {
byte *newPal = _realPal;
const byte *oldPal = palette;
for (int i = 0; i < 256; i++, newPal += 3, oldPal += 3)
YUV2RGB(oldPal[0] << shift, oldPal[1] << shift, oldPal[2] << shift,
newPal[0], newPal[1], newPal[2]);
} else if ((_format == kPaletteYUV) && (format == kPaletteRGB)) {
byte *newPal = _realPal;
const byte *oldPal = palette;
for (int i = 0; i < 256; i++, newPal += 3, oldPal += 3)
RGB2YUV(oldPal[0] << shift, oldPal[1] << shift, oldPal[2] << shift,
newPal[0], newPal[1], newPal[2]);
} else
memcpy(_realPal, palette, 768);
// Using the specified depth for the lookup
byte *newPal = _lutPal, *oldPal = _realPal;
for (int i = 0; i < 768; i++)
*newPal++ = (*oldPal++) >> _shift;
// Everything has to be rebuilt
_got = 0;
memset(_gots, 0, _dim1);
}
PaletteLUT::~PaletteLUT() {
delete[] _lut;
delete[] _gots;
}
void PaletteLUT::buildNext() {
if (_got >= _dim1)
return;
build(_got++);
}
#define SQR(x) ((x) * (x))
// Building one "slice"
void PaletteLUT::build(int d1) {
// First dimension
byte *lut = _lut + d1 * _dim2;
// Second dimension
for (uint32 j = 0; j < _dim1; j++) {
// Third dimension
for (uint32 k = 0; k < _dim1; k++) {
const byte *p = _lutPal;
uint32 d = 0xFFFFFFFF;
byte n = 0;
// Going over every palette entry, searching for the closest
for (int c = 0; c < 256; c++, p += 3) {
// Ignore the transparent color
if (c == _transp)
continue;
uint32 di = SQR(d1 - p[0]) + SQR(j - p[1]) + SQR(k - p[2]);
if (di < d) {
d = di;
n = c;
if (d == 0)
break;
}
}
*lut++ = n;
}
}
// Got this slice now
_gots[d1] = 1;
}
inline int PaletteLUT::getIndex(byte c1, byte c2, byte c3) const {
return ((c1 >> _shift) << _depth2) | ((c2 >> _shift) << _depth1) | (c3 >> _shift);
}
void PaletteLUT::getEntry(byte index, byte &c1, byte &c2, byte &c3) const {
c1 = _realPal[index * 3 + 0];
c2 = _realPal[index * 3 + 1];
c3 = _realPal[index * 3 + 2];
}
byte PaletteLUT::findNearest(byte c1, byte c2, byte c3) {
return _lut[getIndex(c1, c2, c3)];
}
byte PaletteLUT::findNearest(byte c1, byte c2, byte c3, byte &nC1, byte &nC2, byte &nC3) {
// If we don't have the required "slice" yet, build it
if (!_gots[c1 >> _shift])
build(c1 >> _shift);
int palIndex = _lut[getIndex(c1, c2, c3)];
int i = palIndex * 3;
nC1 = _realPal[i + 0];
nC2 = _realPal[i + 1];
nC3 = _realPal[i + 2];
return palIndex;
}
bool PaletteLUT::save(Common::WriteStream &stream) {
// The table has to be completely built before we can save
while (_got < _dim1)
buildNext();
stream.writeUint32BE(MKTAG('P','L','U','T')); // Magic
stream.writeUint32BE(kVersion);
stream.writeByte(_depth1);
if (stream.write(_realPal, 768) != 768)
return false;
if (stream.write(_lutPal, 768) != 768)
return false;
if (stream.write(_lut, _dim3) != _dim3)
return false;
if (!stream.flush())
return false;
if (stream.err())
return false;
return true;
}
bool PaletteLUT::load(Common::SeekableReadStream &stream) {
// _realPal + _lutPal + _lut + _depth1 + magic + version
int32 needSize = 768 + 768 + _dim3 + 1 + 4 + 4;
if ((stream.size() - stream.pos()) < needSize)
return false;
// Magic
if (stream.readUint32BE() != MKTAG('P','L','U','T'))
return false;
if (stream.readUint32BE() != kVersion)
return false;
byte depth1 = stream.readByte();
if (depth1 != _depth1)
return false;
if (stream.read(_realPal, 768) != 768)
return false;
if (stream.read(_lutPal, 768) != 768)
return false;
if (stream.read(_lut, _dim3) != _dim3)
return false;
_got = _dim1;
memset(_gots, 1, _dim1);
return true;
}
SierraLight::SierraLight(int16 width, PaletteLUT *palLUT) {
assert(width > 0);
_width = width;
_palLUT = palLUT;
// Big buffer for the errors of the current and next line
_errorBuf = new int32[3 * (2 * (_width + 2*1))];
memset(_errorBuf, 0, (3 * (2 * (_width + 2*1))) * sizeof(int32));
_curLine = 0;
_errors[0] = _errorBuf + 3;
_errors[1] = _errors[0] + 3 * (_width + 2*1);
}
SierraLight::~SierraLight() {
delete[] _errorBuf;
}
void SierraLight::newFrame() {
_curLine = 0;
memset(_errors[0], 0, 3 * _width * sizeof(int32));
memset(_errors[1], 0, 3 * _width * sizeof(int32));
}
void SierraLight::nextLine() {
// Clear the finished line, it will become the last line in the buffer
memset(_errors[_curLine], 0, 3 * _width * sizeof(int32));
_curLine = (_curLine + 1) % 2;
}
byte SierraLight::dither(byte c1, byte c2, byte c3, uint32 x) {
assert(_palLUT);
assert(x < (uint32)_width);
int32 eC1, eC2, eC3;
getErrors(x, eC1, eC2, eC3);
// Apply error on values
c1 = CLIP<int>(c1 + eC1, 0, 255);
c2 = CLIP<int>(c2 + eC2, 0, 255);
c3 = CLIP<int>(c3 + eC3, 0, 255);
// Find color
byte newC1, newC2, newC3;
byte newPixel = _palLUT->findNearest(c1, c2, c3, newC1, newC2, newC3);
// Calculate new error
eC1 = c1 - newC1;
eC2 = c2 - newC2;
eC3 = c3 - newC3;
// Add them
addErrors(x, eC1, eC2, eC3);
return newPixel;
}
inline void SierraLight::getErrors(uint32 x, int32 &eC1, int32 &eC2, int32 &eC3) {
int32 *errCur = _errors[_curLine];
x *= 3;
eC1 = errCur[x + 0] >> 2;
eC2 = errCur[x + 1] >> 2;
eC3 = errCur[x + 2] >> 2;
}
inline void SierraLight::addErrors(uint32 x, int32 eC1, int32 eC2, int32 eC3) {
int32 *errCur = _errors[_curLine];
int32 *errNext = _errors[(_curLine + 1) % 2];
// Indices for current error
int x0 = 3 * (x + 1);
int x1 = 3 * (x + 0);
int x2 = 3 * (x - 1);
errCur [x0 + 0] += eC1 << 1;
errCur [x0 + 1] += eC2 << 1;
errCur [x0 + 2] += eC3 << 1;
errNext[x1 + 0] += eC1;
errNext[x1 + 1] += eC2;
errNext[x1 + 2] += eC3;
errNext[x2 + 0] += eC1;
errNext[x2 + 1] += eC2;
errNext[x2 + 2] += eC3;
}
} // End of namespace Graphics
|