aboutsummaryrefslogtreecommitdiff
path: root/graphics/jpeg.cpp
blob: 8ff253fda72d9f3a7d93d83cfd01eac8e4238eb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * $URL$
 * $Id$
 *
 */

#include "graphics/jpeg.h"

#include "common/endian.h"
#include "common/util.h"

namespace Graphics {

// Order used to traverse the quantization tables
static const uint8 _zigZagOrder[64] = {
	0,   1,  8, 16,  9,  2,  3, 10,
	17, 24, 32, 25, 18, 11,  4,  5,
	12, 19, 26, 33, 40, 48, 41, 34,
	27, 20, 13,  6,  7, 14, 21, 28,
	35, 42, 49, 56, 57, 50, 43, 36,
	29, 22, 15, 23, 30, 37, 44, 51,
	58, 59, 52, 45, 38, 31, 39, 46,
	53, 60, 61, 54, 47, 55, 62, 63
};

JPEG::JPEG() :
	_str(NULL), _w(0), _h(0), _numComp(0), _components(NULL), _numScanComp(0),
	_scanComp(NULL), _currentComp(NULL) {

	// Initialize the quantization tables
	for (int i = 0; i < JPEG_MAX_QUANT_TABLES; i++)
		_quant[i] = NULL;

	// Initialize the Huffman tables
	for (int i = 0; i < 2 * JPEG_MAX_HUFF_TABLES; i++) {
		_huff[i].count = 0;
		_huff[i].values = NULL;
		_huff[i].sizes = NULL;
		_huff[i].codes = NULL;
	}

	// Initialize sqrt_2 and cosine lookups
	_sqrt_2 = sqrt(2.0f);
	debug(2, "JPEG: _sqrt_2: %f", _sqrt_2);

	for(byte i = 0; i < 32; i++) {
		_cosine_32[i] = cos(i * PI / 16);
		debug(2, "JPEG: _cosine_32[%d]: %f", i, _cosine_32[i]);
	}
}

JPEG::~JPEG() {
	reset();
}

void JPEG::reset() {
	// Reset member variables
	_str = NULL;
	_w = _h = 0;

	// Free the components
	for (int c = 0; c < _numComp; c++)
		_components[c].surface.free();
	delete[] _components; _components = NULL;
	_numComp = 0;

	// Free the scan components
	delete[] _scanComp; _scanComp = NULL;
	_numScanComp = 0;
	_currentComp = NULL;

	// Free the quantization tables
	for (int i = 0; i < JPEG_MAX_QUANT_TABLES; i++) {
		delete[] _quant[i];
		_quant[i] = NULL;
	}

	// Free the Huffman tables
	for (int i = 0; i < 2 * JPEG_MAX_HUFF_TABLES; i++) {
		_huff[i].count = 0;
		delete[] _huff[i].values; _huff[i].values = NULL;
		delete[] _huff[i].sizes; _huff[i].sizes = NULL;
		delete[] _huff[i].codes; _huff[i].codes = NULL;
	}
}

bool JPEG::read(Common::SeekableReadStream *str) {
	// Reset member variables and tables from previous reads
	reset();

	// Save the input stream
	_str = str;

	bool ok = true;
	bool done = false;
	while (!_str->eos() && ok && !done) {
		// Read the marker

		// WORKAROUND: While each and every JPEG file should end with
		// an EOI (end of image) tag, in reality this may not be the
		// case. For instance, at least one image in the Masterpiece
		// edition of Myst doesn't, yet other programs are able to read
		// the image without complaining.
		//
		// Apparently, the customary workaround is to insert a fake
		// EOI tag.

		uint16 marker = _str->readByte();
		bool fakeEOI = false;

		if (_str->eos()) {
			fakeEOI = true;
			marker = 0xFF;
		}

		if (marker != 0xFF) {
			error("JPEG: Invalid marker[0]: 0x%02X", marker);
			ok = false;
			break;
		}
		
		while (marker == 0xFF && !_str->eos())
			marker = _str->readByte();

		if (_str->eos()) {
			fakeEOI = true;
			marker = 0xD9;
		}

		if (fakeEOI)
			warning("JPEG: Inserted fake EOI");

		// Process the marker data
		switch (marker) {
		case 0xC0: // Start Of Frame
			ok = readSOF0();
			break;
		case 0xC4: // Define Huffman Tables
			ok = readDHT();
			break;
		case 0xD8: // Start Of Image
			break;
		case 0xD9: // End Of Image
			done = true;
			break;
		case 0xDA: // Start Of Scan
			ok = readSOS();
			break;
		case 0xDB: // Define Quantization Tables
			ok = readDQT();
			break;
		case 0xE0: // JFIF/JFXX segment
			ok = readJFIF();
			break;
		case 0xFE: // Comment
			_str->seek(_str->readUint16BE() - 2, SEEK_CUR);
			break;
		default: { // Unknown marker
			uint16 size = _str->readUint16BE();
			warning("JPEG: Unknown marker %02X, skipping %d bytes", marker, size - 2);
			_str->seek(size - 2, SEEK_CUR);
		}
		}
	}
	return ok;
}

bool JPEG::readJFIF() {
	uint16 length = _str->readUint16BE();
	uint32 tag = _str->readUint32BE();
	if (tag != MKID_BE('JFIF')) {
		warning("JPEG::readJFIF() tag mismatch");
		return false;
	}
	if (_str->readByte() != 0)  { // NULL
		warning("JPEG::readJFIF() NULL mismatch");
		return false;
	}
	byte majorVersion = _str->readByte();
	byte minorVersion = _str->readByte();
	if(majorVersion != 1 || minorVersion != 1)
		warning("JPEG::readJFIF() Non-v1.1 JPEGs may not be handled correctly!");
	/* byte densityUnits = */ _str->readByte();
	/* uint16 xDensity = */ _str->readUint16BE();
	/* uint16 yDensity = */ _str->readUint16BE();
	byte thumbW = _str->readByte();
	byte thumbH = _str->readByte();
	_str->seek(thumbW * thumbH * 3, SEEK_CUR); // Ignore thumbnail
	if (length != (thumbW * thumbH * 3) + 16) {
		warning("JPEG::readJFIF() length mismatch");
		return false;
	}
	return true;
}

// Marker 0xC0 (Start Of Frame, Baseline DCT)
bool JPEG::readSOF0() {
	debug(5, "JPEG: readSOF0");
	uint16 size = _str->readUint16BE();

	// Read the sample precision
	uint8 precision = _str->readByte();
	if (precision != 8) {
		warning("JPEG: Just 8 bit precision supported at the moment");
		return false;
	}

	// Image size
	_h = _str->readUint16BE();
	_w = _str->readUint16BE();

	// Number of components
	_numComp = _str->readByte();
	if (size != 8 + 3 * _numComp) {
		warning("JPEG: Invalid number of components");
		return false;
	}

	// Allocate the new components
	delete[] _components;
	_components = new Component[_numComp];

	// Read the components details
	for (int c = 0; c < _numComp; c++) {
		_components[c].id = _str->readByte();
		_components[c].factorH = _str->readByte();
		_components[c].factorV = _components[c].factorH & 0xF;
		_components[c].factorH >>= 4;
		_components[c].quantTableSelector = _str->readByte();
	}

	return true;
}

// Marker 0xC4 (Define Huffman Tables)
bool JPEG::readDHT() {
	debug(5, "JPEG: readDHT");
	uint16 size = _str->readUint16BE() - 2;
	uint32 pos = _str->pos();

	while ((uint32)_str->pos() < (size + pos)) {
		// Read the table type and id
		uint8 tableId = _str->readByte();
		uint8 tableType = tableId >> 4; // type 0: DC, 1: AC
		tableId &= 0xF;
		uint8 tableNum = (tableId << 1) + tableType;

		// Free the Huffman table
		delete[] _huff[tableNum].values; _huff[tableNum].values = NULL;
		delete[] _huff[tableNum].sizes; _huff[tableNum].sizes = NULL;
		delete[] _huff[tableNum].codes;	_huff[tableNum].codes = NULL;

		// Read the number of values for each length
		uint8 numValues[16];
		_huff[tableNum].count = 0;
		for (int len = 0; len < 16; len++) {
			numValues[len] = _str->readByte();
			_huff[tableNum].count += numValues[len];
		}

		// Allocate memory for the current table
		_huff[tableNum].values = new uint8[_huff[tableNum].count];
		_huff[tableNum].sizes = new uint8[_huff[tableNum].count];
		_huff[tableNum].codes = new uint16[_huff[tableNum].count];

		// Read the table contents
		int cur = 0;
		for (int len = 0; len < 16; len++) {
			for (int i = 0; i < numValues[len]; i++) {
				_huff[tableNum].values[cur] = _str->readByte();
				_huff[tableNum].sizes[cur] = len + 1;
				cur++;
			}
		}

		// Fill the table of Huffman codes
		cur = 0;
		uint16 curCode = 0;
		uint8 curCodeSize = _huff[tableNum].sizes[0];
		while (cur < _huff[tableNum].count) {
			// Increase the code size to fit the request
			while (_huff[tableNum].sizes[cur] != curCodeSize) {
				curCode <<= 1;
				curCodeSize++;
			}

			// Assign the current code
			_huff[tableNum].codes[cur] = curCode;
			curCode++;
			cur++;
		}
	}
	
	return true;
}

// Marker 0xDA (Start Of Scan)
bool JPEG::readSOS() {
	debug(5, "JPEG: readSOS");
	uint16 size = _str->readUint16BE();

	// Number of scan components
	_numScanComp = _str->readByte();
	if (size != 6 + 2 * _numScanComp) {
		warning("JPEG: Invalid number of components");
		return false;
	}

	// Allocate the new scan components
	delete[] _scanComp;
	_scanComp = new Component *[_numScanComp];

	// Reset the maximum sampling factors
	_maxFactorV = 0;
	_maxFactorH = 0;

	// Component-specification parameters
	for (int c = 0; c < _numScanComp; c++) {
		// Read the desired component id
		uint8 id = _str->readByte();

		// Search the component with the specified id
		bool found = false;
		for (int i = 0; !found && i < _numComp; i++) {
			if (_components[i].id == id) {
				// We found the desired component
				found = true;

				// Assign the found component to the c'th scan component
				_scanComp[c] = &_components[i];
			}
		}
		
		if (!found) {
			warning("JPEG: Invalid component");
			return false;
		}

		// Read the entropy table selectors
		_scanComp[c]->DCentropyTableSelector = _str->readByte();
		_scanComp[c]->ACentropyTableSelector = _scanComp[c]->DCentropyTableSelector & 0xF;
		_scanComp[c]->DCentropyTableSelector >>= 4;

		// Calculate the maximum sampling factors
		if (_scanComp[c]->factorV > _maxFactorV)
			_maxFactorV = _scanComp[c]->factorV;

		if (_scanComp[c]->factorH > _maxFactorH)
			_maxFactorH = _scanComp[c]->factorH;

		// Initialize the DC predictor
		_scanComp[c]->DCpredictor = 0;
	}

	// Start of spectral selection
	if (_str->readByte() != 0) {
		warning("JPEG: Progressive scanning not supported");
		return false;
	}

	// End of spectral selection
	if (_str->readByte() != 63) {
		warning("JPEG: Progressive scanning not supported");
		return false;
	}

	// Successive approximation parameters
	if (_str->readByte() != 0) {
		warning("JPEG: Progressive scanning not supported");
		return false;
	}

	// Entropy coded sequence starts, initialize Huffman decoder
	_bitsNumber = 0;

	// Read all the scan MCUs
	uint16 xMCU = _w / (_maxFactorH * 8);
	uint16 yMCU = _h / (_maxFactorV * 8);

	// Check for non- multiple-of-8 dimensions
	if (_w % (_maxFactorH * 8) != 0)
		xMCU++;
	if (_h % (_maxFactorV * 8) != 0)
		yMCU++;

	// Initialize the scan surfaces
	for (uint16 c = 0; c < _numScanComp; c++) {
		_scanComp[c]->surface.create(xMCU * _maxFactorH * 8, yMCU * _maxFactorV * 8, 1);
	}

	bool ok = true;
	for (int y = 0; ok && (y < yMCU); y++)
		for (int x = 0; ok && (x < xMCU); x++)
			ok = readMCU(x, y);

	// Trim Component surfaces back to image height and width
	// Note: Code using jpeg must use surface.pitch correctly...
	for (uint16 c = 0; c < _numScanComp; c++) {
		_scanComp[c]->surface.w = _w;
		_scanComp[c]->surface.h = _h;
	}

	return ok;
}

// Marker 0xDB (Define Quantization Tables)
bool JPEG::readDQT() {
	debug(5, "JPEG: readDQT");
	uint16 size = _str->readUint16BE() - 2;
	uint32 pos = _str->pos();
	
	while ((uint32)_str->pos() < (pos + size)) {	
		// Read the table precision and id
		uint8 tableId = _str->readByte();
		bool highPrecision = (tableId & 0xF0) != 0;
		
		// Validate the table id
		tableId &= 0xF;
		if (tableId > JPEG_MAX_QUANT_TABLES) {
			warning("JPEG: Invalid number of components");
			return false;
		}

		// Create the new table if necessary
		if (!_quant[tableId])
			_quant[tableId] = new uint16[64];

		// Read the table (stored in Zig-Zag order)
		for (int i = 0; i < 64; i++)
			_quant[tableId][i] = highPrecision ? _str->readUint16BE() : _str->readByte();
	}
	
	return true;
}

bool JPEG::readMCU(uint16 xMCU, uint16 yMCU) {
	bool ok = true;
	for (int c = 0; ok && (c < _numComp); c++) {
		// Set the current component
		_currentComp = _scanComp[c];

		// Read the data units of the current component
		for (int y = 0; ok && (y < _scanComp[c]->factorV); y++)
			for (int x = 0; ok && (x < _scanComp[c]->factorH); x++)
				ok = readDataUnit(xMCU * _scanComp[c]->factorH + x, yMCU * _scanComp[c]->factorV + y);
	}

	return ok;
}

float JPEG::idct(int x, int y, int weight, int fx, int fy) {
	byte vx_in = ((int32)((2 * x) + 1) * fx) % 32;
	byte vy_in = ((int32)((2 * y) + 1) * fy) % 32;
	float ret = (float)weight * _cosine_32[vx_in] * _cosine_32[vy_in];
	
	if (fx == 0)
		ret /= _sqrt_2;
		
	if (fy == 0)
		ret /= _sqrt_2;

	return ret;
}

bool JPEG::readDataUnit(uint16 x, uint16 y) {
	// Prepare an empty data array
	int16 readData[64];
	for (int i = 1; i < 64; i++)
		readData[i] = 0;

	// Read the DC component
	readData[0] = _currentComp->DCpredictor + readDC();
	_currentComp->DCpredictor = readData[0];

	// Read the AC components (stored in Zig-Zag)
	readAC(readData);

	// Calculate the DCT coefficients from the input sequence
	int16 DCT[64];
	for (uint8 i = 0; i < 64; i++) {
		// Dequantize
		int16 val = readData[i];
		int16 quant = _quant[_currentComp->quantTableSelector][i];
		val *= quant;

		// Store the normalized coefficients, undoing the Zig-Zag
		DCT[_zigZagOrder[i]] = val;
	}

	// Shortcut the IDCT for DC component
	float result[64];
	for (uint8 i = 0; i < 64; i++)
		result[i] = DCT[0] / 2;

	// Apply the IDCT (PAG31)
	for (int i = 1; i < 64; i++) {
		if (DCT[i])
			for (int _y = 0; _y < 8; _y++)
				for (int _x = 0; _x < 8; _x++)
					result[_y * 8 + _x] += idct(_x, _y, DCT[i], i % 8, i / 8);
	}

	// Level shift to make the values unsigned
	// Divide by 4 is final part of IDCT
	for (int i = 0; i < 64; i++) {
		result[i] = result[i] / 4 + 128;
		
		if (result[i] < 0)
			result[i] = 0;

		if (result[i] > 255)
			result[i] = 255;
	}

	// Paint the component surface
	uint8 scalingV = _maxFactorV / _currentComp->factorV;
	uint8 scalingH = _maxFactorH / _currentComp->factorH;

	// Convert coordinates from MCU blocks to pixels
	x <<= 3;
	y <<= 3;

	for (uint8 j = 0; j < 8; j++) {
		for (uint16 sV = 0; sV < scalingV; sV++) {
			// Get the beginning of the block line
			byte *ptr = (byte *)_currentComp->surface.getBasePtr(x * scalingH, (y + j) * scalingV + sV);

			for (uint8 i = 0; i < 8; i++) {
				for (uint16 sH = 0; sH < scalingH; sH++) {
					*ptr = (byte)(result[j * 8 + i]);
					ptr++;
				}
			}
		}
	}

	return true;
}

int16 JPEG::readDC() {
	// DC is type 0
	uint8 tableNum = _currentComp->DCentropyTableSelector << 1;

	// Get the number of bits to read
	uint8 numBits = readHuff(tableNum);

	// Read the requested bits
	return readSignedBits(numBits);
}

void JPEG::readAC(int16 *out) {
	// AC is type 1
	uint8 tableNum = (_currentComp->ACentropyTableSelector << 1) + 1;

	// Start reading AC element 1
	uint8 cur = 1;
	while (cur < 64) {
		uint8 s = readHuff(tableNum);
		uint8 r = s >> 4;
		s &= 0xF;

		if (s == 0) {
			if (r == 15) {
				// Skip 16 values
				cur += 16;
			} else {
				// EOB: end of block
				cur = 64;
			}
		} else {
			// Skip r values
			cur += r;

			// Read the next value
			out[cur] = readSignedBits(s);
			cur++;
		}
	}
}

int16 JPEG::readSignedBits(uint8 numBits) {
	uint16 ret = 0;
	if (numBits > 16) error("requested %d bits", numBits); //XXX

	// MSB=0 for negatives, 1 for positives
	for (int i = 0; i < numBits; i++)
		ret = (ret << 1) + readBit();

	// Extend sign bits (PAG109)
	if (!(ret >> (numBits - 1)))
	{
		uint16 tmp = ((uint16)-1 << numBits) + 1;
		ret = ret + tmp;
	}
	return ret;
}

// TODO: optimize?
uint8 JPEG::readHuff(uint8 table) {
	bool foundCode = false;
	uint8 val = 0;

	uint8 cur = 0;
	uint8 codeSize = 1;
	uint16 code = readBit();
	while (!foundCode) {
		// Prepare a code of the current size
		while (codeSize < _huff[table].sizes[cur]) {
			code = (code << 1) + readBit();
			codeSize++;
		}

		// Compare the codes of the current size
		while (!foundCode && (codeSize == _huff[table].sizes[cur])) {
			if (code == _huff[table].codes[cur]) {
				// Found the code
				val = _huff[table].values[cur];
				foundCode = true;
			} else {
				// Continue reading
				cur++;
			}
		}
	}

	return val;
}

uint8 JPEG::readBit() {
	// Read a whole byte if necessary
	if (_bitsNumber == 0) {
		_bitsData = _str->readByte();
		_bitsNumber = 8;

		// Detect markers
		if (_bitsData == 0xFF) {
			uint8 byte2 = _str->readByte();

			// A stuffed 0 validates the previous byte
			if (byte2 != 0) {
				if (byte2 == 0xDC) {
					// DNL marker: Define Number of Lines
					// TODO: terminate scan
					printf("DNL marker detected: terminate scan\n");
				} else {
					printf("Error: marker 0x%02X read in entropy data\n", byte2);
				}
			}
		}
	}
	_bitsNumber--;

	return (_bitsData & (1 << _bitsNumber)) ? 1 : 0;
}

Surface *JPEG::getComponent(uint c) {
	for (int i = 0; i < _numComp; i++)
		if (_components[i].id == c) // We found the desired component
			return &_components[i].surface;

	return NULL;
}

} // End of Graphics namespace