aboutsummaryrefslogtreecommitdiff
path: root/sound/rate.cpp
blob: b1be58ebdf2ea48c9427eefc6c7392124f04079f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/* ScummVM - Scumm Interpreter
 * Copyright (C) 2001-2003 The ScummVM project
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * $Header$
 *
 */

/*
 * The code in this file is based on code with Copyright 1998 Fabrice Bellard
 * Fabrice original code is part of SoX (http://sox.sourceforge.net).
 * Max Horn adapted that code to the needs of ScummVM and rewrote it partial,
 * in the process removing any use of floating point arithmetic. Various other
 * improvments over the original code were made.
 */

#include "stdafx.h"
#include "sound/rate.h"


#define FRAC_BITS 16


/**
 * Audio rate converter based on simple linear Interpolation.
 *
 * The use of fractional increment allows us to use no buffer. It
 * avoid the problems at the end of the buffer we had with the old
 * method which stored a possibly big buffer of size
 * lcm(in_rate,out_rate).
 *
 * Limited to sampling frequency <= 65535 Hz.
 */
class LinearRateConverter : public RateConverter {
protected:
	bool _reverseStereo;

	/** fractional position of the output stream in input stream unit */
	unsigned long opos, opos_frac;

	/** fractional position increment in the output stream */
	unsigned long opos_inc, opos_inc_frac;

	/** position in the input stream (integer) */
	unsigned long ipos;

	/** last sample(s) in the input stream (left/right channel) */
	st_sample_t ilast[2];
	/** current sample(s) in the input stream (left/right channel) */
	st_sample_t icur[2];

	/** Rate convert data from the given input stream and write the result into obuf. */
	template<bool stereo, int leftChannel>
	int st_rate_flow(AudioInputStream &input, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol);
public:
	LinearRateConverter(st_rate_t inrate, st_rate_t outrate, bool reverseStereo);

	virtual int flow(AudioInputStream &input, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
		if (input.isStereo()) {
			if (_reverseStereo)
				return st_rate_flow<true, 1>(input, obuf, osamp, vol);
			else
				return st_rate_flow<true, 0>(input, obuf, osamp, vol);
		} else
			return st_rate_flow<false, 0>(input, obuf, osamp, vol);
	}
	
	virtual int drain(st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
		return (ST_SUCCESS);
	}
};


/*
 * Prepare processing.
 */
LinearRateConverter::LinearRateConverter(st_rate_t inrate, st_rate_t outrate, bool reverseStereo)
	: _reverseStereo(reverseStereo) {
	unsigned long incr;

	if (inrate == outrate) {
		error("Input and Output rates must be different to use rate effect");
	}

	if (inrate >= 65536 || outrate >= 65536) {
		error("rate effect can only handle rates < 65536");
	}

	opos_frac = 0;
	opos = 0;

	/* increment */
	incr = (inrate << FRAC_BITS) / outrate;

	opos_inc_frac = incr & ((1UL << FRAC_BITS) - 1);
	opos_inc = incr >> FRAC_BITS;

	ipos = 0;

	ilast[0] = ilast[1] = 0;
	icur[0] = icur[1] = 0;
}

/*
 * Processed signed long samples from ibuf to obuf.
 * Return number of samples processed.
 */
template<bool stereo, int leftChannel>
int LinearRateConverter::st_rate_flow(AudioInputStream &input, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol)
{
	st_sample_t *ostart, *oend;
	st_sample_t out;
	unsigned long tmp;

	assert(leftChannel == 0 || leftChannel == 1);

	ostart = obuf;
	oend = obuf + *osamp * 2;

	while (obuf < oend && !input.eof()) {

		// read enough input samples so that ipos > opos
		while (ipos <= opos + 1) {
			ilast[0] = icur[0];
			icur[0] = input.read();
			if (stereo) {
				ilast[1] = icur[1];
				icur[1] = input.read();
			}
			ipos++;

			// Abort if we reached the end of the input buffer
			if (input.eof())
				goto the_end;
		}

		// Loop as long as the outpos trails behind, and as long as there is
		// still space in the output buffer.
		while (ipos > opos + 1) {

			// interpolate
			out = (st_sample_t) (ilast[leftChannel] + (((icur[leftChannel] - ilast[leftChannel]) * opos_frac + (1UL << (FRAC_BITS-1))) >> FRAC_BITS));
			// adjust volume
			out = out * vol / 256;
	
			// output left channel sample
			clampedAdd(*obuf++, out);
			
			if (stereo) {
				// interpolate
				out = (st_sample_t) (ilast[1-leftChannel] + (((icur[1-leftChannel] - ilast[1-leftChannel]) * opos_frac + (1UL << (FRAC_BITS-1))) >> FRAC_BITS));
				// adjust volume
				out = out * vol / 256;
			}
	
			// output right channel sample
			clampedAdd(*obuf++, out);
	
			// Increment output position
			tmp = opos_frac + opos_inc_frac;
			opos += opos_inc + (tmp >> FRAC_BITS);
			opos_frac = tmp & ((1UL << FRAC_BITS) - 1);

			// Abort if we reached the end of the output buffer
			if (obuf >= oend)
				goto the_end;
		}
	}

the_end:
	*osamp = (obuf - ostart) / 2;
	return (ST_SUCCESS);
}


#pragma mark -


/**
 * Simple audio rate converter for the case that the inrate equals the outrate.
 */
template<bool stereo, bool reverseStereo>
class CopyRateConverter : public RateConverter {
public:
	virtual int flow(AudioInputStream &input, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
		int16 tmp[2];
		st_size_t len = *osamp;
		assert(input.isStereo() == stereo);
		while (!input.eof() && len--) {
			tmp[0] = tmp[1] = input.read() * vol / 256;
			if (stereo)
				tmp[reverseStereo ? 0 : 1] = input.read() * vol / 256;
			clampedAdd(*obuf++, tmp[0]);
			clampedAdd(*obuf++, tmp[1]);
		}
		return (ST_SUCCESS);
	}
	virtual int drain(st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
		return (ST_SUCCESS);
	}
};


#pragma mark -


/**
 * Create and return a RateConverter object for the specified input and output rates.
 */
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate, bool stereo, bool reverseStereo) {
	if (inrate != outrate) {
		return new LinearRateConverter(inrate, outrate, reverseStereo);
		//return new ResampleRateConverter(inrate, outrate, 1);
	} else {
		if (stereo) {
			if (reverseStereo)
				return new CopyRateConverter<true, true>();
			else
				return new CopyRateConverter<true, false>();
		} else
			return new CopyRateConverter<false, false>();
	}
}