aboutsummaryrefslogtreecommitdiff
path: root/sound/resample.cpp
blob: fc87619e03b4e340f7ae72958ffa2ef55c975a6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
#include "stdafx.h"
#include <math.h>
#include "sound/resample.h"
#include "sound/audiostream.h"


#pragma mark -



/**
 * Calculates the filter coeffs for a Kaiser-windowed low-pass filter with a
 * given roll-off frequency. These coeffs are stored into a array of doubles.
 *
 * reference: "Digital Filters, 2nd edition"
 *            R.W. Hamming, pp. 178-179
 *
 * LpFilter() computes the coeffs of a Kaiser-windowed low pass filter with
 *    the following characteristics:
 *
 *       c[]  = array in which to store computed coeffs
 *       frq  = roll-off frequency of filter
 *       N    = Half the window length in number of coeffs
 *       Beta = parameter of Kaiser window
 *       Num  = number of coeffs before 1/frq
 *
 * Beta trades the rejection of the lowpass filter against the transition
 *    width from passband to stopband.  Larger Beta means a slower
 *    transition and greater stopband rejection.  See Rabiner and Gold
 *    (Theory and Application of DSP) under Kaiser windows for more about
 *    Beta.  The following table from Rabiner and Gold gives some feel
 *    for the effect of Beta:
 *
 * All ripples in dB, width of transition band = D*N where N = window length
 *
 *               BETA    D       PB RIP   SB RIP
 *               2.120   1.50  +-0.27      -30
 *               3.384   2.23    0.0864    -40
 *               4.538   2.93    0.0274    -50
 *               5.658   3.62    0.00868   -60
 *               6.764   4.32    0.00275   -70
 *               7.865   5.0     0.000868  -80
 *               8.960   5.7     0.000275  -90
 *               10.056  6.4     0.000087  -100
 */
static void LpFilter(double c[], int N, double frq, double Beta, int Num);

/**
 * Calls LpFilter() to create a filter, then scales the double coeffs into an
 * array of half words.
 * ERROR return codes:
 *    0 - no error
 *    1 - Nwing too large (Nwing is > MAXNWING)
 *    2 - Froll is not in interval [0:1)
 *    3 - Beta is < 1.0
 *    4 - LpScl will not fit in 16-bits
 */
static int makeFilter(HWORD Imp[], HWORD ImpD[], UHWORD *LpScl, UHWORD Nwing,
	       double Froll, double Beta);

static WORD FilterUp(HWORD Imp[], HWORD ImpD[], UHWORD Nwing, bool Interp,
	      HWORD *Xp, HWORD Inc, HWORD Ph);

static WORD FilterUD(HWORD Imp[], HWORD ImpD[], UHWORD Nwing, bool Interp,
	      HWORD *Xp, HWORD Ph, HWORD Inc, UHWORD dhb);



#pragma mark -


/*
 *
 * The configuration constants below govern
 * the number of bits in the input sample and filter coefficients, the 
 * number of bits to the right of the binary-point for fixed-point math, etc.
 *
 */

/* Conversion constants */
#define Nhc       8
#define Na        7
#define Np       (Nhc+Na)
#define Npc      (1<<Nhc)
#define Amask    ((1<<Na)-1)
#define Pmask    ((1<<Np)-1)
#define Nh       16
#define Nb       16
#define Nhxn     14
#define Nhg      (Nh-Nhxn)
#define NLpScl   13

/* Description of constants:
 *
 * Npc - is the number of look-up values available for the lowpass filter
 *    between the beginning of its impulse response and the "cutoff time"
 *    of the filter.  The cutoff time is defined as the reciprocal of the
 *    lowpass-filter cut off frequence in Hz.  For example, if the
 *    lowpass filter were a sinc function, Npc would be the index of the
 *    impulse-response lookup-table corresponding to the first zero-
 *    crossing of the sinc function.  (The inverse first zero-crossing
 *    time of a sinc function equals its nominal cutoff frequency in Hz.)
 *    Npc must be a power of 2 due to the details of the current
 *    implementation. The default value of 512 is sufficiently high that
 *    using linear interpolation to fill in between the table entries
 *    gives approximately 16-bit accuracy in filter coefficients.
 *
 * Nhc - is log base 2 of Npc.
 *
 * Na - is the number of bits devoted to linear interpolation of the
 *    filter coefficients.
 *
 * Np - is Na + Nhc, the number of bits to the right of the binary point
 *    in the integer "time" variable. To the left of the point, it indexes
 *    the input array (X), and to the right, it is interpreted as a number
 *    between 0 and 1 sample of the input X.  Np must be less than 16 in
 *    this implementation.
 *
 * Nh - is the number of bits in the filter coefficients. The sum of Nh and
 *    the number of bits in the input data (typically 16) cannot exceed 32.
 *    Thus Nh should be 16.  The largest filter coefficient should nearly
 *    fill 16 bits (32767).
 *
 * Nb - is the number of bits in the input data. The sum of Nb and Nh cannot
 *    exceed 32.
 *
 * Nhxn - is the number of bits to right shift after multiplying each input
 *    sample times a filter coefficient. It can be as great as Nh and as
 *    small as 0. Nhxn = Nh-2 gives 2 guard bits in the multiply-add
 *    accumulation.  If Nhxn=0, the accumulation will soon overflow 32 bits.
 *
 * Nhg - is the number of guard bits in mpy-add accumulation (equal to Nh-Nhxn)
 *
 * NLpScl - is the number of bits allocated to the unity-gain normalization
 *    factor.  The output of the lowpass filter is multiplied by LpScl and
 *    then right-shifted NLpScl bits. To avoid overflow, we must have 
 *    Nb+Nhg+NLpScl < 32.
 */


#pragma mark -


#define IBUFFSIZE 4096                         /* Input buffer size */

static inline HWORD WordToHword(WORD v, int scl)
{
    HWORD out;

    v = (v + (1 << (NLpScl-1))) >> NLpScl;	// Round & scale

    if (v>MAX_HWORD) {
        v = MAX_HWORD;
    } else if (v < MIN_HWORD) {
        v = MIN_HWORD;
    }   
    out = (HWORD) v;
    return out;
}

/* Sampling rate up-conversion only subroutine;
 * Slightly faster than down-conversion;
 */
static int SrcUp(HWORD X[], HWORD Y[], double factor, UWORD *Time,
                 UHWORD Nx, UHWORD Nwing, UHWORD LpScl,
                 HWORD Imp[], HWORD ImpD[], bool Interp)
{
    HWORD *Xp, *Ystart;
    WORD v;
    
    double dt;                  /* Step through input signal */ 
    UWORD dtb;                  /* Fixed-point version of Dt */
    UWORD endTime;              /* When Time reaches EndTime, return to user */
    
    dt = 1.0/factor;            /* Output sampling period */
    dtb = (UWORD)(dt*(1<<Np) + 0.5);     /* Fixed-point representation */
    
    Ystart = Y;
    endTime = *Time + (1<<Np)*(WORD)Nx;
    while (*Time < endTime)
    {
        Xp = &X[*Time>>Np];      /* Ptr to current input sample */
        /* Perform left-wing inner product */
        v = FilterUp(Imp, ImpD, Nwing, Interp, Xp, (HWORD)(*Time&Pmask),-1);
        /* Perform right-wing inner product */
        v += FilterUp(Imp, ImpD, Nwing, Interp, Xp+1, 
		      /* previous (triggers warning): (HWORD)((-*Time)&Pmask),1); */
                      (HWORD)((((*Time)^Pmask)+1)&Pmask),1);
        v >>= Nhg;              /* Make guard bits */
        v *= LpScl;             /* Normalize for unity filter gain */
        *Y++ = WordToHword(v,NLpScl);   /* strip guard bits, deposit output */
        *Time += dtb;           /* Move to next sample by time increment */
    }
    return (Y - Ystart);        /* Return the number of output samples */
}


/* Sampling rate conversion subroutine */

static int SrcUD(HWORD X[], HWORD Y[], double factor, UWORD *Time,
                 UHWORD Nx, UHWORD Nwing, UHWORD LpScl,
                 HWORD Imp[], HWORD ImpD[], bool Interp)
{
    HWORD *Xp, *Ystart;
    WORD v;
    
    double dh;                  /* Step through filter impulse response */
    double dt;                  /* Step through input signal */
    UWORD endTime;              /* When Time reaches EndTime, return to user */
    UWORD dhb, dtb;             /* Fixed-point versions of Dh,Dt */
    
    dt = 1.0/factor;            /* Output sampling period */
    dtb = (UWORD)(dt*(1<<Np) + 0.5);     /* Fixed-point representation */
    
    dh = MIN((double)Npc, factor*Npc);  /* Filter sampling period */
    dhb = (UWORD)(dh*(1<<Na) + 0.5);     /* Fixed-point representation */
    
    Ystart = Y;
    endTime = *Time + (1<<Np)*(WORD)Nx;
    while (*Time < endTime)
    {
        Xp = &X[*Time>>Np];     /* Ptr to current input sample */
        v = FilterUD(Imp, ImpD, Nwing, Interp, Xp, (HWORD)(*Time&Pmask),
                     -1, dhb);  /* Perform left-wing inner product */
        v += FilterUD(Imp, ImpD, Nwing, Interp, Xp+1, 
		      /* previous (triggers warning): (HWORD)((-*Time)&Pmask), */
                      (HWORD)((((*Time)^Pmask)+1)&Pmask),
                      1, dhb);  /* Perform right-wing inner product */
        v >>= Nhg;              /* Make guard bits */
        v *= LpScl;             /* Normalize for unity filter gain */
        *Y++ = WordToHword(v,NLpScl);   /* strip guard bits, deposit output */
        *Time += dtb;           /* Move to next sample by time increment */
    }
    return (Y - Ystart);        /* Return the number of output samples */
}


#pragma mark -


#define IzeroEPSILON 1E-21               /* Max error acceptable in Izero */

static double Izero(double x)
{
   double sum, u, halfx, temp;
   int n;

   sum = u = n = 1;
   halfx = x/2.0;
   do {
      temp = halfx/(double)n;
      n += 1;
      temp *= temp;
      u *= temp;
      sum += u;
      } while (u >= IzeroEPSILON*sum);
   return(sum);
}


void LpFilter(double c[], int N, double frq, double Beta, int Num)
{
   double IBeta, temp, inm1;
   int i;

   /* Calculate ideal lowpass filter impulse response coefficients: */
   c[0] = 2.0*frq;
   for (i=1; i<N; i++) {
       temp = M_PI*(double)i/(double)Num;
       c[i] = sin(2.0*temp*frq)/temp; /* Analog sinc function, cutoff = frq */
   }

   /* 
    * Calculate and Apply Kaiser window to ideal lowpass filter.
    * Note: last window value is IBeta which is NOT zero.
    * You're supposed to really truncate the window here, not ramp
    * it to zero. This helps reduce the first sidelobe. 
    */
   IBeta = 1.0/Izero(Beta);
   inm1 = 1.0/((double)(N-1));
   for (i=1; i<N; i++) {
       temp = (double)i * inm1;
       c[i] *= Izero(Beta*sqrt(1.0-temp*temp)) * IBeta;
   }
}

static double ImpR[MAXNWING];

int makeFilter(HWORD Imp[], HWORD ImpD[], UHWORD *LpScl, UHWORD Nwing,
	       double Froll, double Beta)
{
   double DCgain, Scl, Maxh;
   HWORD Dh;
   int i, temp;

   if (Nwing > MAXNWING)                      /* Check for valid parameters */
      return(1);
   if ((Froll<=0) || (Froll>1))
      return(2);
   if (Beta < 1)
      return(3);

   /* 
    * Design Kaiser-windowed sinc-function low-pass filter 
    */
   LpFilter(ImpR, (int)Nwing, 0.5*Froll, Beta, Npc); 

   /* Compute the DC gain of the lowpass filter, and its maximum coefficient
    * magnitude. Scale the coefficients so that the maximum coeffiecient just
    * fits in Nh-bit fixed-point, and compute LpScl as the NLpScl-bit (signed)
    * scale factor which when multiplied by the output of the lowpass filter
    * gives unity gain. */
   DCgain = 0;
   Dh = Npc;                       /* Filter sampling period for factors>=1 */
   for (i=Dh; i<Nwing; i+=Dh)
      DCgain += ImpR[i];
   DCgain = 2*DCgain + ImpR[0];    /* DC gain of real coefficients */

   for (Maxh=i=0; i<Nwing; i++)
      Maxh = MAX(Maxh, fabs(ImpR[i]));

   Scl = ((1<<(Nh-1))-1)/Maxh;     /* Map largest coeff to 16-bit maximum */
   temp = (int)fabs((1<<(NLpScl+Nh))/(DCgain*Scl));
   if (temp >= 1<<16)
      return(4);                   /* Filter scale factor overflows UHWORD */
   *LpScl = temp;

   /* Scale filter coefficients for Nh bits and convert to integer */
   if (ImpR[0] < 0)                /* Need pos 1st value for LpScl storage */
      Scl = -Scl;
   for (i=0; i<Nwing; i++)         /* Scale them */
      ImpR[i] *= Scl;
   for (i=0; i<Nwing; i++)         /* Round them */
      Imp[i] = (HWORD)(ImpR[i] + 0.5);

   /* ImpD makes linear interpolation of the filter coefficients faster */
   for (i=0; i<Nwing-1; i++)
      ImpD[i] = Imp[i+1] - Imp[i];
   ImpD[Nwing-1] = - Imp[Nwing-1];      /* Last coeff. not interpolated */

   return(0);
}


#pragma mark -


WORD FilterUp(HWORD Imp[], HWORD ImpD[], 
		     UHWORD Nwing, bool Interp,
		     HWORD *Xp, HWORD Ph, HWORD Inc)
{
    HWORD *Hp, *Hdp = NULL, *End;
    HWORD a = 0;
    WORD v, t;
    
    v=0;
    Hp = &Imp[Ph>>Na];
    End = &Imp[Nwing];
    if (Interp) {
	Hdp = &ImpD[Ph>>Na];
	a = Ph & Amask;
    }
    if (Inc == 1)		/* If doing right wing...              */
    {				/* ...drop extra coeff, so when Ph is  */
	End--;			/*    0.5, we don't do too many mult's */
	if (Ph == 0)		/* If the phase is zero...           */
	{			/* ...then we've already skipped the */
	    Hp += Npc;		/*    first sample, so we must also  */
	    Hdp += Npc;		/*    skip ahead in Imp[] and ImpD[] */
	}
    }
    if (Interp)
      while (Hp < End) {
	  t = *Hp;		/* Get filter coeff */
	  t += (((WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
	  Hdp += Npc;		/* Filter coeff differences step */
	  t *= *Xp;		/* Mult coeff by input sample */
	  if (t & (1<<(Nhxn-1)))  /* Round, if needed */
	    t += (1<<(Nhxn-1));
	  t >>= Nhxn;		/* Leave some guard bits, but come back some */
	  v += t;			/* The filter output */
	  Hp += Npc;		/* Filter coeff step */
	  Xp += Inc;		/* Input signal step. NO CHECK ON BOUNDS */
      } 
    else 
      while (Hp < End) {
	  t = *Hp;		/* Get filter coeff */
	  t *= *Xp;		/* Mult coeff by input sample */
	  if (t & (1<<(Nhxn-1)))  /* Round, if needed */
	    t += (1<<(Nhxn-1));
	  t >>= Nhxn;		/* Leave some guard bits, but come back some */
	  v += t;			/* The filter output */
	  Hp += Npc;		/* Filter coeff step */
	  Xp += Inc;		/* Input signal step. NO CHECK ON BOUNDS */
      }
    return(v);
}

WORD FilterUD( HWORD Imp[], HWORD ImpD[],
		     UHWORD Nwing, bool Interp,
		     HWORD *Xp, HWORD Ph, HWORD Inc, UHWORD dhb)
{
    HWORD a;
    HWORD *Hp, *Hdp, *End;
    WORD v, t;
    UWORD Ho;
    
    v=0;
    Ho = (Ph*(UWORD)dhb)>>Np;
    End = &Imp[Nwing];
    if (Inc == 1)		/* If doing right wing...              */
    {				/* ...drop extra coeff, so when Ph is  */
	End--;			/*    0.5, we don't do too many mult's */
	if (Ph == 0)		/* If the phase is zero...           */
	  Ho += dhb;		/* ...then we've already skipped the */
    }				/*    first sample, so we must also  */
				/*    skip ahead in Imp[] and ImpD[] */
    if (Interp)
      while ((Hp = &Imp[Ho>>Na]) < End) {
	  t = *Hp;		/* Get IR sample */
	  Hdp = &ImpD[Ho>>Na];  /* get interp (lower Na) bits from diff table*/
	  a = Ho & Amask;	/* a is logically between 0 and 1 */
	  t += (((WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
	  t *= *Xp;		/* Mult coeff by input sample */
	  if (t & 1<<(Nhxn-1))	/* Round, if needed */
	    t += 1<<(Nhxn-1);
	  t >>= Nhxn;		/* Leave some guard bits, but come back some */
	  v += t;			/* The filter output */
	  Ho += dhb;		/* IR step */
	  Xp += Inc;		/* Input signal step. NO CHECK ON BOUNDS */
      }
    else 
      while ((Hp = &Imp[Ho>>Na]) < End) {
	  t = *Hp;		/* Get IR sample */
	  t *= *Xp;		/* Mult coeff by input sample */
	  if (t & 1<<(Nhxn-1))	/* Round, if needed */
	    t += 1<<(Nhxn-1);
	  t >>= Nhxn;		/* Leave some guard bits, but come back some */
	  v += t;			/* The filter output */
	  Ho += dhb;		/* IR step */
	  Xp += Inc;		/* Input signal step. NO CHECK ON BOUNDS */
      }
    return(v);
}


#pragma mark -


#if 0
static int resampleWithFilter(  /* number of output samples returned */
    double factor,              /* factor = outSampleRate/inSampleRate */
    int infd,                   /* input and output file descriptors */
    int outfd,
    int inCount,                /* number of input samples to convert */
    int outCount,               /* number of output samples to compute */
    int nChans,                 /* number of sound channels (1 or 2) */
    bool interpFilt,            /* TRUE means interpolate filter coeffs */
    HWORD Imp[], HWORD ImpD[],
    UHWORD LpScl, UHWORD Nmult, UHWORD Nwing)
{
    UWORD Time, Time2;          /* Current time/pos in input sample */
    UHWORD Xp, Ncreep, Xoff, Xread;
    int OBUFFSIZE = (int)(((double)IBUFFSIZE)*factor+2.0);
    HWORD X1[IBUFFSIZE], Y1[OBUFFSIZE]; /* I/O buffers */
    HWORD X2[IBUFFSIZE], Y2[OBUFFSIZE]; /* I/O buffers */
    UHWORD Nout, Nx;
    int i, Ycount, last;
    
    MUS_SAMPLE_TYPE **obufs = sndlib_allocate_buffers(nChans, OBUFFSIZE);
    if (obufs == NULL)
        return err_ret("Can't allocate output buffers");

    /* Account for increased filter gain when using factors less than 1 */
    if (factor < 1)
      LpScl = LpScl*factor + 0.5;

    /* Calc reach of LP filter wing & give some creeping room */
    Xoff = ((Nmult+1)/2.0) * MAX(1.0,1.0/factor) + 10;

    if (IBUFFSIZE < 2*Xoff)      /* Check input buffer size */
      return err_ret("IBUFFSIZE (or factor) is too small");

    Nx = IBUFFSIZE - 2*Xoff;     /* # of samples to process each iteration */
    
    last = 0;                   /* Have not read last input sample yet */
    Ycount = 0;                 /* Current sample and length of output file */
    Xp = Xoff;                  /* Current "now"-sample pointer for input */
    Xread = Xoff;               /* Position in input array to read into */
    Time = (Xoff<<Np);          /* Current-time pointer for converter */
    
    for (i=0; i<Xoff; X1[i++]=0); /* Need Xoff zeros at begining of sample */
    for (i=0; i<Xoff; X2[i++]=0); /* Need Xoff zeros at begining of sample */
        
    do {
        if (!last)              /* If haven't read last sample yet */
        {
            last = readData(infd, inCount, X1, X2, IBUFFSIZE, 
                            nChans, (int)Xread);
            if (last && (last-Xoff<Nx)) { /* If last sample has been read... */
                Nx = last-Xoff; /* ...calc last sample affected by filter */
                if (Nx <= 0)
                  break;
            }
        }
        /* Resample stuff in input buffer */
        Time2 = Time;
        if (factor >= 1) {      /* SrcUp() is faster if we can use it */
            Nout=SrcUp(X1,Y1,factor,&Time,Nx,Nwing,LpScl,Imp,ImpD,interpFilt);
            if (nChans==2)
              Nout=SrcUp(X2,Y2,factor,&Time2,Nx,Nwing,LpScl,Imp,ImpD,
                         interpFilt);
        }
        else {
            Nout=SrcUD(X1,Y1,factor,&Time,Nx,Nwing,LpScl,Imp,ImpD,interpFilt);
            if (nChans==2)
              Nout=SrcUD(X2,Y2,factor,&Time2,Nx,Nwing,LpScl,Imp,ImpD,
                         interpFilt);
        }

        Time -= (Nx<<Np);       /* Move converter Nx samples back in time */
        Xp += Nx;               /* Advance by number of samples processed */
        Ncreep = (Time>>Np) - Xoff; /* Calc time accumulation in Time */
        if (Ncreep) {
            Time -= (Ncreep<<Np);    /* Remove time accumulation */
            Xp += Ncreep;            /* and add it to read pointer */
        }
        for (i=0; i<IBUFFSIZE-Xp+Xoff; i++) { /* Copy part of input signal */
            X1[i] = X1[i+Xp-Xoff]; /* that must be re-used */
            if (nChans==2)
              X2[i] = X2[i+Xp-Xoff]; /* that must be re-used */
        }
        if (last) {             /* If near end of sample... */
            last -= Xp;         /* ...keep track were it ends */
            if (!last)          /* Lengthen input by 1 sample if... */
              last++;           /* ...needed to keep flag TRUE */
        }
        Xread = i;              /* Pos in input buff to read new data into */
        Xp = Xoff;
        
        Ycount += Nout;
        if (Ycount>outCount) {
            Nout -= (Ycount-outCount);
            Ycount = outCount;
        }

        if (Nout > OBUFFSIZE) /* Check to see if output buff overflowed */
          return err_ret("Output array overflow");
        
        if (nChans==1) {
            for (i = 0; i < Nout; i++)
              obufs[0][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y1[i]);
        } else {
            for (i = 0; i < Nout; i++) {
                obufs[0][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y1[i]);
                obufs[1][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y2[i]);
            }
        }
        /* NB: errors reported within sndlib */
        mus_file_write(outfd, 0, Nout - 1, nChans, obufs);

        printf(".");  fflush(stdout);

    } while (Ycount<outCount); /* Continue until done */

    return(Ycount);             /* Return # of samples in output file */
}
#endif


#pragma mark -


#if 0
/* here for linear interp.  might be useful for other things */
static st_rate_t st_gcd(st_rate_t a, st_rate_t b)
{
	if (b == 0)
		return a;
	else
		return st_gcd(b, a % b);
}


/*
 * Prepare processing.
 */
int st_resample_start(resample_t r, st_rate_t inrate, st_rate_t outrate) {
	long Xoff, gcdrate;
	int i;

	if (inrate == outrate) {
		st_fail("Input and Output rates must be different to use resample effect");
		return (ST_EOF);
	}

	r->Factor = (double)outrate / (double)inrate;

	gcdrate = st_gcd(inrate, outrate);
	r->a = inrate / gcdrate;
	r->b = outrate / gcdrate;

	if (r->a <= r->b && r->b <= NQMAX) {
		r->quadr = -1; /* exact coeff's	  */
		r->Nq = r->b;  /* MAX(r->a,r->b);	*/
	} else {
		r->Nq = Nc; /* for now */
	}

	/* Check for illegal constants */
# if 0
	if (Lp >= 16)
		st_fail("Error: Lp>=16");
	if (Nb + Nhg + NLpScl >= 32)
		st_fail("Error: Nb+Nhg+NLpScl>=32");
	if (Nh + Nb > 32)
		st_fail("Error: Nh+Nb>32");
# endif

	/* Nwing: # of filter coeffs in right wing */
	r->Nwing = r->Nq * (r->Nmult / 2 + 1) + 1;

	r->Imp = (Float *)malloc(sizeof(Float) * (r->Nwing + 2)) + 1;
	/* need Imp[-1] and Imp[Nwing] for quadratic interpolation */
	/* returns error # <=0, or adjusted wing-len > 0 */
	i = makeFilter(r->Imp, r->Nwing, r->rolloff, r->beta, r->Nq);
	if (i <= 0) {
		st_fail("resample: Unable to make filter\n");
		return (ST_EOF);
	}

	st_report("Nmult: %ld, Nwing: %ld, Nq: %ld\n",r->Nmult,r->Nwing,r->Nq);	// FIXME

	if (r->quadr < 0) { /* exact coeff's method */
		r->Xh = r->Nwing / r->b;
		st_report("resample: rate ratio %ld:%ld, coeff interpolation not needed\n", r->a, r->b);
	} else {
		r->dhb = Np;	/* Fixed-point Filter sampling-time-increment */
		if (r->Factor < 1.0)
			r->dhb = (long)(r->Factor * Np + 0.5);
		r->Xh = (r->Nwing << La) / r->dhb;
		/* (Xh * dhb)>>La is max index into Imp[] */
	}

	/* reach of LP filter wings + some creeping room */
	Xoff = r->Xh + 10;
	r->Xoff = Xoff;

	/* Current "now"-sample pointer for input to filter */
	r->Xp = Xoff;
	/* Position in input array to read into */
	r->Xread = Xoff;
	/* Current-time pointer for converter */
	r->Time = Xoff;
	if (r->quadr < 0) { /* exact coeff's method */
		r->t = Xoff * r->Nq;
	}
	i = BUFFSIZE - 2 * Xoff;
	if (i < r->Factor + 1.0 / r->Factor)	/* Check input buffer size */
	{
		st_fail("Factor is too small or large for BUFFSIZE");
		return (ST_EOF);
	}

	r->Xsize = (long)(2 * Xoff + i / (1.0 + r->Factor));
	r->Ysize = BUFFSIZE - r->Xsize;
	st_report("Xsize %ld, Ysize %ld, Xoff %ld",r->Xsize,r->Ysize,r->Xoff);	// FIXME

	r->X = (Float *) malloc(sizeof(Float) * (BUFFSIZE));
	r->Y = r->X + r->Xsize;
	r->Yposition = 0;

	/* Need Xoff zeros at beginning of sample */
	for (i = 0; i < Xoff; i++)
		r->X[i] = 0;
	return (ST_SUCCESS);
}

/*
 * Processed signed long samples from ibuf to obuf.
 * Return number of samples processed.
 */
int st_resample_flow(resample_t r, AudioStream &input, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
	long i, k, last;
	long Nout = 0;	// The number of bytes we effectively output
	long Nx;		// The number of bytes we will read from input
	long Nproc;		// The number of bytes we process to generate Nout output bytes
	const long obufSize = *osamp;

/*
TODO: adjust for the changes made to AudioStream; add support for stereo
initially, could just average the left/right channel -> bad for quality of course,
but easiest to implement and would get this going again.
Next step is to duplicate the X/Y buffers... a lot of computations don't care about
how many channels there are anyway, they could just be ran twice, e.g. SrcEX and SrcUD.
But better for efficiency would be to rewrite those to deal with 2 channels, too.
Because esp in SrcEX/SrcUD, only very few computations depend on the input data,
and dealing with both channels in parallel should only be a little slower than dealing
with them alone
*/

	// Constrain amount we actually process
	//fprintf(stderr,"Xp %d, Xread %d\n",r->Xp, r->Xread);

	// Initially assume we process the full X buffer starting at the filter
	// start position.
	Nproc = r->Xsize - r->Xp;

	// Nproc is bounded indirectly by the size of output buffer, and also by
	// the remaining size of the Y buffer (whichever is smaller).
	// We round up for the output buffer, because we want to generate enough
	// bytes to fill it.
	i = MIN((long)((r->Ysize - r->Yposition) / r->Factor), (long)ceil((obufSize - r->Yposition) / r->Factor));
	if (Nproc > i)
		Nproc = i;

	// Now that we know how many bytes we want to process, we determine
	// how many bytes to read. We already have Xread bytes in our input
	// buffer, so we need Nproc - r->Xread more bytes.
	Nx = Nproc - r->Xread + r->Xoff + r->Xp; // FIXME: Fingolfin thinks this is the correct thing, not what's in the next line!
//	Nx = Nproc - r->Xread; /* space for right-wing future-data */
	if (Nx <= 0) {
		st_fail("resample: Can not handle this sample rate change. Nx not positive: %d", Nx);
		return (ST_EOF);
	}

	// Read in up to Nx bytes
	for (i = r->Xread; i < Nx + r->Xread && !input.eos(); i++) {
		r->X[i] = (Float)input.read();
	}
	Nx = i - r->Xread;	// Compute how many samples we actually read

	fprintf(stderr,"Nx %d\n",Nx);


	last = Nx + r->Xread;	// 'last' is the idx after the last valid byte in X (i.e. number of bytes are in buffer X right now)
	
	// Finally compute the effective number of bytes to process
	Nproc = last - r->Xoff - r->Xp;

	if (Nproc <= 0) {
		/* fill in starting here next time */
		r->Xread = last;
		/* leave *isamp alone, we consumed it */
		*osamp = 0;
		return (ST_SUCCESS);
	}
	if (r->quadr < 0) { /* exact coeff's method */
		long creep;
		Nout = SrcEX(r, Nproc) + r->Yposition;
		fprintf(stderr,"Nproc %d --> %d\n",Nproc,Nout);
		/* Move converter Nproc samples back in time */
		r->t -= Nproc * r->b;
		/* Advance by number of samples processed */
		r->Xp += Nproc;
		/* Calc time accumulation in Time */
		creep = r->t / r->b - r->Xoff;
		if (creep) {
			r->t -= creep * r->b;	 /* Remove time accumulation   */
			r->Xp += creep;	 /* and add it to read pointer */
			fprintf(stderr,"Nproc %ld, creep %ld\n",Nproc,creep);
		}
	} else { /* approx coeff's method */
		long creep;
		Nout = SrcUD(r, Nproc) + r->Yposition;
		fprintf(stderr,"Nproc %d --> %d\n",Nproc,Nout);
		/* Move converter Nproc samples back in time */
		r->Time -= Nproc;
		/* Advance by number of samples processed */
		r->Xp += Nproc;
		/* Calc time accumulation in Time */
		creep = (long)(r->Time - r->Xoff);
		if (creep) {
			r->Time -= creep;   /* Remove time accumulation   */
			r->Xp += creep;     /* and add it to read pointer */
			fprintf(stderr,"Nproc %ld, creep %ld\n",Nproc,creep);
		}
	}

	/* Copy back portion of input signal that must be re-used */
	k = r->Xp - r->Xoff;
	//fprintf(stderr,"k %d, last %d\n",k,last);
	for (i = 0; i < last - k; i++)
		r->X[i] = r->X[i + k];

	/* Pos in input buff to read new data into */
	r->Xread = i;
	r->Xp = r->Xoff;

printf("osamp = %ld, Nout = %ld\n", obufSize, Nout);
	long numOutSamples = MIN(obufSize, Nout);
	for (i = 0; i < numOutSamples; i++) {
		int sample = (int)(r->Y[i] * vol / 256);
		clampedAdd(*obuf++, sample);
#if 1	// FIXME: Hack to generate stereo output
//		clampedAdd(*obuf++, sample);
		*obuf++;
#endif
	}

	// Move down the remaining Y bytes
	for (i = numOutSamples; i < Nout; i++) {
		r->Y[i-numOutSamples] = r->Y[i];
	}
	if (Nout > numOutSamples)
		r->Yposition = Nout - numOutSamples;
	else
		r->Yposition = 0;
	
	// Finally set *osamp to the number of samples we put into the output buffer
	*osamp = numOutSamples;

	return (ST_SUCCESS);
}

/*
 * Process tail of input samples.
 */
int st_resample_drain(resample_t r, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
	long osamp_res;
	st_sample_t *Obuf;
	int rc;

	/*fprintf(stderr,"Xoff %d, Xt %d  <--- DRAIN\n",r->Xoff, r->Xt);*/

	/* stuff end with Xoff zeros */
	ZeroInputStream zero(r->Xoff);
	osamp_res = *osamp;
	Obuf = obuf;
	while (!zero.eos() && osamp_res > 0) {
		st_sample_t Osamp;
		Osamp = osamp_res;
		rc = st_resample_flow(r, zero, Obuf, (st_size_t *) & Osamp, vol);
		if (rc)
			return rc;
		/*fprintf(stderr,"DRAIN isamp,osamp	(%d,%d) -> (%d,%d)\n",
		    isamp_res,osamp_res,Isamp,Osamp);*/
		Obuf += Osamp;
		osamp_res -= Osamp;
	}
	*osamp -= osamp_res;
	fprintf(stderr,"DRAIN osamp %d\n", *osamp);
	if (!zero.eos())
		st_warn("drain overran obuf\n");
	fflush(stderr);
	return (ST_SUCCESS);
}

/*
 * Do anything required when you stop reading samples.	
 * Don't close input file! 
 */
int st_resample_stop(resample_t r) {
	free(r->Imp - 1);
	free(r->X);
	/* free(r->Y); Y is in same block starting at X */
	return (ST_SUCCESS);
}

#endif

#pragma mark -


ResampleRateConverter::ResampleRateConverter(st_rate_t inrate, st_rate_t outrate, int quality) {
	// FIXME: quality is for now a nasty hack. Valid values are 0,1,2,3

	double rolloff;    /* roll-off frequency */
	double beta;	   /* passband/stopband tuning magic */

	switch (quality) {
	case 0:
		/* These defaults are conservative with respect to aliasing. */
		rolloff = 0.80;
		beta = 16;
		quadr = 0;
		Nmult = 45;
		break;
	case 1:
		rolloff = 0.80;
		beta = 16;
		quadr = 1;
		Nmult = 45;
		break;
	case 2:
		rolloff = 0.875;
		beta = 16;
		quadr = 1;
		Nmult = 75;
		break;
	case 3:
		rolloff = 0.94;
		beta = 16;
		quadr = 1;
		Nmult = 149;
		break;
	default:
		error("Illegal quality level %d\n", quality);
		break;
	}

	makeFilter(Imp, ImpD, &LpScl, Nmult, rolloff, beta);

    int OBUFFSIZE = (IBUFFSIZE * outrate / inrate + 2);
    X1 = (HWORD *)malloc(IBUFFSIZE);
    X2 = (HWORD *)malloc(IBUFFSIZE);
    Y1 = (HWORD *)malloc(OBUFFSIZE);
    Y2 = (HWORD *)malloc(OBUFFSIZE);
    
    // HACK this is invalid code but "fixes" a compiler warning for now
	double factor = outrate / (double)inrate;
	UHWORD Xp, /*Ncreep,*/ Xoff, Xread;
	UHWORD Nout, Nx;
	int Ycount, last;
	
	/* Account for increased filter gain when using factors less than 1 */
	if (factor < 1)
		LpScl = (UHWORD)(LpScl*factor + 0.5);
	
	/* Calc reach of LP filter wing & give some creeping room */
	Xoff = (UHWORD)(((Nmult+1)/2.0) * MAX(1.0,1.0/factor) + 10);
	
	if (IBUFFSIZE < 2*Xoff)      /* Check input buffer size */
		error("IBUFFSIZE (or factor) is too small");
	
	Nx = IBUFFSIZE - 2*Xoff;     /* # of samples to process each iteration */
	
	last = 0;                   /* Have not read last input sample yet */
	Ycount = 0;                 /* Current sample and length of output file */
	Xp = Xoff;                  /* Current "now"-sample pointer for input */
	Xread = Xoff;               /* Position in input array to read into */
	Time = (Xoff<<Np);          /* Current-time pointer for converter */
	
	Nout = SrcUp(X1, Y1, factor, &Time, Nx, Nwing, LpScl, Imp, ImpD, quadr);
	Nout = SrcUD(X1, Y1, factor, &Time, Nx, Nwing, LpScl, Imp, ImpD, quadr);

//	st_resample_start(&rstuff, inrate, outrate);
}

ResampleRateConverter::~ResampleRateConverter() {
//	st_resample_stop(&rstuff);
	free(X1);
	free(X2);
	free(Y1);
	free(Y2);
}

int ResampleRateConverter::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
//	return st_resample_flow(&rstuff, input, obuf, &osamp, vol);
	return 0;
}

int ResampleRateConverter::drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
//	return st_resample_drain(&rstuff, obuf, &osamp, vol);
	return 0;
}