aboutsummaryrefslogtreecommitdiff
path: root/sound/resample.cpp
blob: 99deeaf3aa686000e7cc34966d5d1bcedb472cc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
/*
* July 5, 1991
* Copyright 1991 Lance Norskog And Sundry Contributors
* This source code is freely redistributable and may be used for
* any purpose.	 This copyright notice must be maintained. 
* Lance Norskog And Sundry Contributors are not responsible for 
* the consequences of using this software.
*/

/*
 * Sound Tools rate change effect file.
 * Spiffy rate changer using Smith & Wesson Bandwidth-Limited Interpolation.
 * The algorithm is described in "Bandlimited Interpolation -
 * Introduction and Algorithm" by Julian O. Smith III.
 * Available on ccrma-ftp.stanford.edu as
 * pub/BandlimitedInterpolation.eps.Z or similar.
 *
 * The latest stand alone version of this algorithm can be found
 * at ftp://ccrma-ftp.stanford.edu/pub/NeXT/
 * under the name of resample-version.number.tar.Z
 *
 * NOTE: There is a newer version of the resample routine then what
 * this file was originally based on.  Those adventurous might be
 * interested in reviewing its improvesments and porting it to this
 * version.
 */

/* Fixed bug: roll off frequency was wrong, too high by 2 when upsampling,
 * too low by 2 when downsampling.
 * Andreas Wilde, 12. Feb. 1999, andreas@eakaw2.et.tu-dresden.de
*/

/*
 * October 29, 1999
 * Various changes, bugfixes(?), increased precision, by Stan Brooks.
 *
 * This source code is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 */ 
/*
 * SJB: [11/25/99]
 * TODO: another idea for improvement...
 * note that upsampling usually doesn't require interpolation,
 * therefore is faster and more accurate than downsampling.
 * Downsampling by an integer factor is also simple, since
 * it just involves decimation if the input is already 
 * lowpass-filtered to the output Nyquist freqency.
 * Get the idea? :)
 */

#include "stdafx.h"
#include <math.h>
#include "sound/resample.h"
#include "sound/audiostream.h"


/* Conversion constants */
#define Lc        7
#define Nc       (1<<Lc)
#define La        16
#define Na       (1<<La)
#define Lp       (Lc+La)
#define Np       (1<<Lp)
#define Amask    (Na-1)
#define Pmask    (Np-1)

#define MAXNWING  (80<<Lc)
/* Description of constants:
 *
 * Nc - is the number of look-up values available for the lowpass filter
 *    between the beginning of its impulse response and the "cutoff time"
 *    of the filter.  The cutoff time is defined as the reciprocal of the
 *    lowpass-filter cut off frequence in Hz.  For example, if the
 *    lowpass filter were a sinc function, Nc would be the index of the
 *    impulse-response lookup-table corresponding to the first zero-
 *    crossing of the sinc function.  (The inverse first zero-crossing
 *    time of a sinc function equals its nominal cutoff frequency in Hz.)
 *    Nc must be a power of 2 due to the details of the current
 *    implementation. The default value of 128 is sufficiently high that
 *    using linear interpolation to fill in between the table entries
 *    gives approximately 16-bit precision, and quadratic interpolation
 *    gives about 23-bit (float) precision in filter coefficients.
 *
 * Lc - is log base 2 of Nc.
 *
 * La - is the number of bits devoted to linear interpolation of the
 *    filter coefficients.
 *
 * Lp - is La + Lc, the number of bits to the right of the binary point
 *    in the integer "time" variable. To the left of the point, it indexes
 *    the input array (X), and to the right, it is interpreted as a number
 *    between 0 and 1 sample of the input X.  The default value of 23 is
 *    about right.  There is a constraint that the filter window must be
 *    "addressable" in a int32_t, more precisely, if Nmult is the number
 *    of sinc zero-crossings in the right wing of the filter window, then
 *    (Nwing<<Lp) must be expressible in 31 bits.
 *
 */


/* this Float MUST match that in filter.c */
#define Float double/*float*/

/* largest factor for which exact-coefficients upsampling will be used */
#define NQMAX 511

#define BUFFSIZE 8192 /*16384*/	 /* Total I/O buffer size */

/* Private data for Lerp via LCM file */
typedef struct resamplestuff {
	double Factor;     /* Factor = Fout/Fin sample rates */
	double rolloff;    /* roll-off frequency */
	double beta;	      /* passband/stopband tuning magic */
	int quadr;	      /* non-zero to use qprodUD quadratic interpolation */
	long Nmult;
	long Nwing;
	long Nq;
	Float *Imp;	      /* impulse [Nwing+1] Filter coefficients */

	double Time;	      /* Current time/pos in input sample */
	long dhb;

	long a, b;	      /* gcd-reduced input,output rates	  */
	long t;	      /* Current time/pos for exact-coeff's method */

	long Xh;	      /* number of past/future samples needed by filter	 */
	long Xoff;	      /* Xh plus some room for creep  */
	long Xread;	      /* X[Xread] is start-position to enter new samples */
	long Xp;	      /* X[Xp] is position to start filter application	 */
	long Xsize, Ysize;  /* size (Floats) of X[],Y[]	  */
	long Yposition;		/* FIXME: offset into Y buffer */
	Float *X, *Y;      /* I/O buffers */
} *resample_t;

static void LpFilter(double c[],
                     long N,
                     double frq,
                     double Beta,
                     long Num);

/* makeFilter is used by filter.c */
int makeFilter(Float Imp[],
               long Nwing,
               double Froll,
               double Beta,
               long Num,
               int Normalize);

static long SrcUD(resample_t r, long Nx);
static long SrcEX(resample_t r, long Nx);

/* here for linear interp.  might be useful for other things */
static st_rate_t st_gcd(st_rate_t a, st_rate_t b)
{
	if (b == 0)
		return a;
	else
		return st_gcd(b, a % b);
}


/*
 * Process options
 */
int st_resample_getopts(eff_t effp, int n, const char **argv) {
	resample_t r = (resample_t) effp->priv;

	/* These defaults are conservative with respect to aliasing. */
	r->rolloff = 0.80;
	r->beta = 16; /* anything <=2 means Nutall window */
	r->quadr = 0;
	r->Nmult = 45;

	/* This used to fail, but with sox-12.15 it works. AW */
	if ((n >= 1)) {
		if (!strcmp(argv[0], "-qs")) {
			r->quadr = 1;
			n--;
			argv++;
		} else if (!strcmp(argv[0], "-q")) {
			r->rolloff = 0.875;
			r->quadr = 1;
			r->Nmult = 75;
			n--;
			argv++;
		} else if (!strcmp(argv[0], "-ql")) {
			r->rolloff = 0.94;
			r->quadr = 1;
			r->Nmult = 149;
			n--;
			argv++;
		}
	}

	if ((n >= 1) && (sscanf(argv[0], "%lf", &r->rolloff) != 1)) {
		st_fail("Usage: resample [ rolloff [ beta ] ]");
		return (ST_EOF);
	} else if ((r->rolloff <= 0.01) || (r->rolloff >= 1.0)) {
		st_fail("resample: rolloff factor (%f) no good, should be 0.01<x<1.0", r->rolloff);
		return (ST_EOF);
	}

	if ((n >= 2) && !sscanf(argv[1], "%lf", &r->beta)) {
		st_fail("Usage: resample [ rolloff [ beta ] ]");
		return (ST_EOF);
	} else if (r->beta <= 2.0) {
		r->beta = 0;
		st_report("resample opts: Nuttall window, cutoff %f\n", r->rolloff);
	} else {
		st_report("resample opts: Kaiser window, cutoff %f, beta %f\n", r->rolloff, r->beta);
	}
	return (ST_SUCCESS);
}

/*
 * Prepare processing.
 */
int st_resample_start(eff_t effp, st_rate_t inrate, st_rate_t outrate) {
	resample_t r = (resample_t) effp->priv;
	long Xoff, gcdrate;
	int i;

	if (inrate == outrate) {
		st_fail("Input and Output rates must be different to use resample effect");
		return (ST_EOF);
	}

	r->Factor = (double)outrate / (double)inrate;

	gcdrate = st_gcd(inrate, outrate);
	r->a = inrate / gcdrate;
	r->b = outrate / gcdrate;

	if (r->a <= r->b && r->b <= NQMAX) {
		r->quadr = -1; /* exact coeff's	  */
		r->Nq = r->b;  /* MAX(r->a,r->b);	*/
	} else {
		r->Nq = Nc; /* for now */
	}

	/* Check for illegal constants */
# if 0
	if (Lp >= 16)
		st_fail("Error: Lp>=16");
	if (Nb + Nhg + NLpScl >= 32)
		st_fail("Error: Nb+Nhg+NLpScl>=32");
	if (Nh + Nb > 32)
		st_fail("Error: Nh+Nb>32");
# endif

	/* Nwing: # of filter coeffs in right wing */
	r->Nwing = r->Nq * (r->Nmult / 2 + 1) + 1;

	r->Imp = (Float *)malloc(sizeof(Float) * (r->Nwing + 2)) + 1;
	/* need Imp[-1] and Imp[Nwing] for quadratic interpolation */
	/* returns error # <=0, or adjusted wing-len > 0 */
	i = makeFilter(r->Imp, r->Nwing, r->rolloff, r->beta, r->Nq, 1);
	if (i <= 0) {
		st_fail("resample: Unable to make filter\n");
		return (ST_EOF);
	}

	st_report("Nmult: %ld, Nwing: %ld, Nq: %ld\n",r->Nmult,r->Nwing,r->Nq);	// FIXME

	if (r->quadr < 0) { /* exact coeff's method */
		r->Xh = r->Nwing / r->b;
		st_report("resample: rate ratio %ld:%ld, coeff interpolation not needed\n", r->a, r->b);
	} else {
		r->dhb = Np;	/* Fixed-point Filter sampling-time-increment */
		if (r->Factor < 1.0)
			r->dhb = (long)(r->Factor * Np + 0.5);
		r->Xh = (r->Nwing << La) / r->dhb;
		/* (Xh * dhb)>>La is max index into Imp[] */
	}

	/* reach of LP filter wings + some creeping room */
	Xoff = r->Xh + 10;
	r->Xoff = Xoff;

	/* Current "now"-sample pointer for input to filter */
	r->Xp = Xoff;
	/* Position in input array to read into */
	r->Xread = Xoff;
	/* Current-time pointer for converter */
	r->Time = Xoff;
	if (r->quadr < 0) { /* exact coeff's method */
		r->t = Xoff * r->Nq;
	}
	i = BUFFSIZE - 2 * Xoff;
	if (i < r->Factor + 1.0 / r->Factor)	/* Check input buffer size */
	{
		st_fail("Factor is too small or large for BUFFSIZE");
		return (ST_EOF);
	}

	r->Xsize = (long)(2 * Xoff + i / (1.0 + r->Factor));
	r->Ysize = BUFFSIZE - r->Xsize;
	st_report("Xsize %ld, Ysize %ld, Xoff %ld",r->Xsize,r->Ysize,r->Xoff);	// FIXME

	r->X = (Float *) malloc(sizeof(Float) * (BUFFSIZE));
	r->Y = r->X + r->Xsize;
	r->Yposition = 0;

	/* Need Xoff zeros at beginning of sample */
	for (i = 0; i < Xoff; i++)
		r->X[i] = 0;
	return (ST_SUCCESS);
}

/*
 * Processed signed long samples from ibuf to obuf.
 * Return number of samples processed.
 */
int st_resample_flow(eff_t effp, AudioInputStream &input, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
	resample_t r = (resample_t) effp->priv;
	long i, k, last;
	long Nout = 0;	// The number of bytes we effectively output
	long Nx;		// The number of bytes we will read from input
	long Nproc;		// The number of bytes we process to generate Nout output bytes
	const long obufSize = *osamp;

/*
TODO: adjust for the changes made to AudioInputStream; add support for stereo
initially, could just average the left/right channel -> bad for quality of course,
but easiest to implement and would get this going again.
Next step is to duplicate the X/Y buffers... a lot of computations don't care about
how many channels there are anyway, they could just be ran twice, e.g. SrcEX and SrcUD.
But better for efficiency would be to rewrite those to deal with 2 channels, too.
Because esp in SrcEX/SrcUD, only very few computations depend on the input data,
and dealing with both channels in parallel should only be a little slower than dealing
with them alone
*/

	// Constrain amount we actually process
	//fprintf(stderr,"Xp %d, Xread %d\n",r->Xp, r->Xread);

	// Initially assume we process the full X buffer starting at the filter
	// start position.
	Nproc = r->Xsize - r->Xp;

	// Nproc is bounded indirectly by the size of output buffer, and also by
	// the remaining size of the Y buffer (whichever is smaller).
	// We round up for the output buffer, because we want to generate enough
	// bytes to fill it.
	i = MIN((long)((r->Ysize - r->Yposition) / r->Factor), (long)ceil((obufSize - r->Yposition) / r->Factor));
	if (Nproc > i)
		Nproc = i;

	// Now that we know how many bytes we want to process, we determine
	// how many bytes to read. We already have Xread bytes in our input
	// buffer, so we need Nproc - r->Xread more bytes.
	Nx = Nproc - r->Xread + r->Xoff + r->Xp; // FIXME: Fingolfin thinks this is the correct thing, not what's in the next line!
//	Nx = Nproc - r->Xread; /* space for right-wing future-data */
	if (Nx <= 0) {
		st_fail("resample: Can not handle this sample rate change. Nx not positive: %d", Nx);
		return (ST_EOF);
	}

	// Read in up to Nx bytes
	for (i = r->Xread; i < Nx + r->Xread && !input.eos(); i++) {
		r->X[i] = (Float)input.read();
	}
	Nx = i - r->Xread;	// Compute how many samples we actually read

	fprintf(stderr,"Nx %d\n",Nx);


	last = Nx + r->Xread;	// 'last' is the idx after the last valid byte in X (i.e. number of bytes are in buffer X right now)
	
	// Finally compute the effective number of bytes to process
	Nproc = last - r->Xoff - r->Xp;

	if (Nproc <= 0) {
		/* fill in starting here next time */
		r->Xread = last;
		/* leave *isamp alone, we consumed it */
		*osamp = 0;
		return (ST_SUCCESS);
	}
	if (r->quadr < 0) { /* exact coeff's method */
		long creep;
		Nout = SrcEX(r, Nproc) + r->Yposition;
		fprintf(stderr,"Nproc %d --> %d\n",Nproc,Nout);
		/* Move converter Nproc samples back in time */
		r->t -= Nproc * r->b;
		/* Advance by number of samples processed */
		r->Xp += Nproc;
		/* Calc time accumulation in Time */
		creep = r->t / r->b - r->Xoff;
		if (creep) {
			r->t -= creep * r->b;	 /* Remove time accumulation   */
			r->Xp += creep;	 /* and add it to read pointer */
			fprintf(stderr,"Nproc %ld, creep %ld\n",Nproc,creep);
		}
	} else { /* approx coeff's method */
		long creep;
		Nout = SrcUD(r, Nproc) + r->Yposition;
		fprintf(stderr,"Nproc %d --> %d\n",Nproc,Nout);
		/* Move converter Nproc samples back in time */
		r->Time -= Nproc;
		/* Advance by number of samples processed */
		r->Xp += Nproc;
		/* Calc time accumulation in Time */
		creep = (long)(r->Time - r->Xoff);
		if (creep) {
			r->Time -= creep;   /* Remove time accumulation   */
			r->Xp += creep;     /* and add it to read pointer */
			fprintf(stderr,"Nproc %ld, creep %ld\n",Nproc,creep);
		}
	}

	/* Copy back portion of input signal that must be re-used */
	k = r->Xp - r->Xoff;
	//fprintf(stderr,"k %d, last %d\n",k,last);
	for (i = 0; i < last - k; i++)
		r->X[i] = r->X[i + k];

	/* Pos in input buff to read new data into */
	r->Xread = i;
	r->Xp = r->Xoff;

printf("osamp = %ld, Nout = %ld\n", obufSize, Nout);
	long numOutSamples = MIN(obufSize, Nout);
	for (i = 0; i < numOutSamples; i++) {
		int sample = (int)(r->Y[i] * vol / 256);
		clampedAdd(*obuf++, sample);
#if 1	// FIXME: Hack to generate stereo output
//		clampedAdd(*obuf++, sample);
		*obuf++;
#endif
	}

	// Move down the remaining Y bytes
	for (i = numOutSamples; i < Nout; i++) {
		r->Y[i-numOutSamples] = r->Y[i];
	}
	if (Nout > numOutSamples)
		r->Yposition = Nout - numOutSamples;
	else
		r->Yposition = 0;
	
	// Finally set *osamp to the number of samples we put into the output buffer
	*osamp = numOutSamples;

	return (ST_SUCCESS);
}

/*
 * Process tail of input samples.
 */
int st_resample_drain(eff_t effp, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
	resample_t r = (resample_t) effp->priv;
	long osamp_res;
	st_sample_t *Obuf;
	int rc;

	/*fprintf(stderr,"Xoff %d, Xt %d  <--- DRAIN\n",r->Xoff, r->Xt);*/

	/* stuff end with Xoff zeros */
	ZeroInputStream zero(r->Xoff);
	osamp_res = *osamp;
	Obuf = obuf;
	while (!zero.eos() && osamp_res > 0) {
		st_sample_t Osamp;
		Osamp = osamp_res;
		rc = st_resample_flow(effp, zero, Obuf, (st_size_t *) & Osamp, vol);
		if (rc)
			return rc;
		/*fprintf(stderr,"DRAIN isamp,osamp	(%d,%d) -> (%d,%d)\n",
		    isamp_res,osamp_res,Isamp,Osamp);*/
		Obuf += Osamp;
		osamp_res -= Osamp;
	}
	*osamp -= osamp_res;
	fprintf(stderr,"DRAIN osamp %d\n", *osamp);
	if (!zero.eos())
		st_warn("drain overran obuf\n");
	fflush(stderr);
	return (ST_SUCCESS);
}

/*
 * Do anything required when you stop reading samples.	
 * Don't close input file! 
 */
int st_resample_stop(eff_t effp) {
	resample_t r = (resample_t) effp->priv;

	free(r->Imp - 1);
	free(r->X);
	/* free(r->Y); Y is in same block starting at X */
	return (ST_SUCCESS);
}

/* over 90% of CPU time spent in this iprodUD() function */
/* quadratic interpolation */
static double qprodUD(const Float Imp[], const Float *Xp, long Inc, double T0,
                      long dhb, long ct) {
	const double f = 1.0 / (1 << La);
	double v;
	long Ho;

	Ho = (long)(T0 * dhb);
	Ho += (ct - 1) * dhb; /* so Float sum starts with smallest coef's */
	Xp += (ct - 1) * Inc;
	v = 0;
	do {
		Float coef;
		long Hoh;
		Hoh = Ho >> La;
		coef = Imp[Hoh];
		{
			Float dm, dp, t;
			dm = coef - Imp[Hoh - 1];
			dp = Imp[Hoh + 1] - coef;
			t = (Ho & Amask) * f;
			coef += ((dp - dm) * t + (dp + dm)) * t * 0.5;
		}
		/* filter coef, lower La bits by quadratic interpolation */
		v += coef * *Xp;   /* sum coeff * input sample */
		Xp -= Inc;	   /* Input signal step. NO CHECK ON ARRAY BOUNDS */
		Ho -= dhb;	   /* IR step */
	} while (--ct);
	return v;
}

/* linear interpolation */
static double iprodUD(const Float Imp[], const Float *Xp, long Inc,
                      double T0, long dhb, long ct) {
	const double f = 1.0 / (1 << La);
	double v;
	long Ho;

	Ho = (long)(T0 * dhb);
	Ho += (ct - 1) * dhb; /* so Float sum starts with smallest coef's */
	Xp += (ct - 1) * Inc;
	v = 0;
	do {
		Float coef;
		long Hoh;
		Hoh = Ho >> La;
		/* if (Hoh >= End) break; */
		coef = Imp[Hoh] + (Imp[Hoh + 1] - Imp[Hoh]) * (Ho & Amask) * f;
		/* filter coef, lower La bits by linear interpolation */
		v += coef * *Xp;   /* sum coeff * input sample */
		Xp -= Inc;	   /* Input signal step. NO CHECK ON ARRAY BOUNDS */
		Ho -= dhb;	   /* IR step */
	} while (--ct);
	return v;
}

/* From resample:filters.c */
/* Sampling rate conversion subroutine */

static long SrcUD(resample_t r, long Nx) {
	Float *Ystart, *Y;
	double Factor;
	double dt;		       /* Step through input signal */
	double time;
	double (*prodUD)(const Float Imp[], const Float *Xp, long Inc, double T0, long dhb, long ct);
	int n;

	prodUD = (r->quadr) ? qprodUD : iprodUD; /* quadratic or linear interp */
	Factor = r->Factor;
	time = r->Time;
	dt = 1.0 / Factor;	   /* Output sampling period */
	//fprintf(stderr,"Factor %f, dt %f, ",Factor,dt);
	//fprintf(stderr,"Time %f, ",r->Time);
	/* (Xh * dhb)>>La is max index into Imp[] */
	/*fprintf(stderr,"ct=%d\n",ct);*/
	//fprintf(stderr,"ct=%.2f %d\n",(double)r->Nwing*Na/r->dhb, r->Xh);
	//fprintf(stderr,"ct=%ld, T=%.6f, dhb=%6f, dt=%.6f\n", r->Xh, time-floor(time),(double)r->dhb/Na,dt);
	Ystart = Y = r->Y + r->Yposition;
	n = (int)ceil((double)Nx / dt);
	while (n--) {
		Float *Xp;
		double v;
		double T;
		T = time - floor(time);	   /* fractional part of Time */
		Xp = r->X + (long)time;	   /* Ptr to current input sample */

		/* Past  inner product: */
		v = (*prodUD)(r->Imp, Xp, -1, T, r->dhb, r->Xh); /* needs Np*Nmult in 31 bits */
		/* Future inner product: */
		v += (*prodUD)(r->Imp, Xp + 1, 1, (1.0 - T), r->dhb, r->Xh); /* prefer even total */

		if (Factor < 1)
			v *= Factor;
		*Y++ = v;		     /* Deposit output */
		time += dt;	     /* Move to next sample by time increment */
	}
	r->Time = time;
	fprintf(stderr,"Time %f\n",r->Time);
	return (Y - Ystart);	       /* Return the number of output samples */
}

/* exact coeff's */
static double prodEX(const Float Imp[], const Float *Xp,
                     long Inc, long T0, long dhb, long ct) {
	double v;
	const Float *Cp;

	Cp = Imp + (ct - 1) * dhb + T0; /* so Float sum starts with smallest coef's */
	Xp += (ct - 1) * Inc;
	v = 0;
	do {
		v += *Cp * *Xp;   /* sum coeff * input sample */
		Cp -= dhb;	   /* IR step */
		Xp -= Inc;	   /* Input signal step. */
	} while (--ct);
	return v;
}

static long SrcEX(resample_t r, long Nx) {
	Float *Ystart, *Y;
	double Factor;
	long a, b;
	long time;
	int n;

	Factor = r->Factor;
	time = r->t;
	a = r->a;
	b = r->b;
	Ystart = Y = r->Y + r->Yposition;
	n = (Nx * b + (a - 1)) / a;
	while (n--) {
		Float *Xp;
		double v;
		long T;
		T = time % b;		   /* fractional part of Time */
		Xp = r->X + (time / b);	   /* Ptr to current input sample */

		/* Past	 inner product: */
		v = prodEX(r->Imp, Xp, -1, T, b, r->Xh);
		/* Future inner product: */
		v += prodEX(r->Imp, Xp + 1, 1, b - T, b, r->Xh);

		if (Factor < 1)
			v *= Factor;
		*Y++ = v;	      /* Deposit output */
		time += a;	      /* Move to next sample by time increment */
	}
	r->t = time;
	return (Y - Ystart);	       /* Return the number of output samples */
}

int makeFilter(Float Imp[], long Nwing, double Froll, double Beta,
               long Num, int Normalize) {
	double *ImpR;
	long Mwing, i;

	if (Nwing > MAXNWING)		      /* Check for valid parameters */
		return ( -1);
	if ((Froll <= 0) || (Froll > 1))
		return ( -2);

	/* it does help accuracy a bit to have the window stop at
	 * a zero-crossing of the sinc function */
	Mwing = (long)(floor((double)Nwing / (Num / Froll)) * (Num / Froll) + 0.5);
	if (Mwing == 0)
		return ( -4);

	ImpR = (double *) malloc(sizeof(double) * Mwing);

	/* Design a Nuttall or Kaiser windowed Sinc low-pass filter */
	LpFilter(ImpR, Mwing, Froll, Beta, Num);

	if (Normalize) { /* 'correct' the DC gain of the lowpass filter */
		long Dh;
		double DCgain;
		DCgain = 0;
		Dh = Num;			 /* Filter sampling period for factors>=1 */
		for (i = Dh; i < Mwing; i += Dh)
			DCgain += ImpR[i];
		DCgain = 2 * DCgain + ImpR[0];    /* DC gain of real coefficients */
		st_report("DCgain err=%.12f",DCgain-1.0);	// FIXME

		DCgain = 1.0 / DCgain;
		for (i = 0; i < Mwing; i++)
			Imp[i] = ImpR[i] * DCgain;

	} else {
		for (i = 0; i < Mwing; i++)
			Imp[i] = ImpR[i];
	}
	free(ImpR);
	for (i = Mwing; i <= Nwing; i++)
		Imp[i] = 0;
	/* Imp[Mwing] and Imp[-1] needed for quadratic interpolation */
	Imp[ -1] = Imp[1];

	return (Mwing);
}

/* LpFilter()
 *
 * reference: "Digital Filters, 2nd edition"
 *	      R.W. Hamming, pp. 178-179
 *
 * Izero() computes the 0th order modified bessel function of the first kind.
 *    (Needed to compute Kaiser window).
 *
 * LpFilter() computes the coeffs of a Kaiser-windowed low pass filter with
 *    the following characteristics:
 *
 *	 c[]  = array in which to store computed coeffs
 *	 frq  = roll-off frequency of filter
 *	 N    = Half the window length in number of coeffs
 *	 Beta = parameter of Kaiser window
 *	 Num  = number of coeffs before 1/frq
 *
 * Beta trades the rejection of the lowpass filter against the transition
 *    width from passband to stopband.	Larger Beta means a slower
 *    transition and greater stopband rejection.  See Rabiner and Gold
 *    (Theory and Application of DSP) under Kaiser windows for more about
 *    Beta.  The following table from Rabiner and Gold gives some feel
 *    for the effect of Beta:
 *
 * All ripples in dB, width of transition band = D*N where N = window length
 *
 *		 BETA	 D	 PB RIP	  SB RIP
 *		 2.120	 1.50  +-0.27	   -30
 *		 3.384	 2.23	 0.0864	   -40
 *		 4.538	 2.93	 0.0274	   -50
 *		 5.658	 3.62	 0.00868   -60
 *		 6.764	 4.32	 0.00275   -70
 *		 7.865	 5.0	 0.000868  -80
 *		 8.960	 5.7	 0.000275  -90
 *		 10.056	 6.4	 0.000087  -100
 */


#define IzeroEPSILON 1E-21		 /* Max error acceptable in Izero */

static double Izero(double x) {
	double sum, u, halfx, temp;
	long n;

	sum = u = n = 1;
	halfx = x / 2.0;
	do {
		temp = halfx / (double)n;
		n += 1;
		temp *= temp;
		u *= temp;
		sum += u;
	} while (u >= IzeroEPSILON*sum);
	return (sum);
}

static void LpFilter(double *c, long N, double frq, double Beta, long Num) {
	long i;

	/* Calculate filter coeffs: */
	c[0] = frq;
	for (i = 1; i < N; i++) {
		double x = M_PI * (double)i / (double)(Num);
		c[i] = sin(x * frq) / x;
	}

	if (Beta > 2) { /* Apply Kaiser window to filter coeffs: */
		double IBeta = 1.0 / Izero(Beta);
		for (i = 1; i < N; i++) {
			double x = (double)i / (double)(N);
			c[i] *= Izero(Beta * sqrt(1.0 - x * x)) * IBeta;
		}
	} else { /* Apply Nuttall window: */
		for (i = 0; i < N; i++) {
			double x = M_PI * i / N;
			c[i] *= 0.36335819 + 0.4891775 * cos(x) + 0.1365995 * cos(2 * x) + 0.0106411 * cos(3 * x);
		}
	}
}


#pragma mark -


ResampleRateConverter::ResampleRateConverter(st_rate_t inrate, st_rate_t outrate, int quality) {
	// FIXME: quality is for now a nasty hack.
	// Valid values are 0,1,2,3 (everything else is treated like 0 for now)
	const char *arg = 0;
	switch (quality) {
	case 1: arg = "-qs"; break;
	case 2: arg = "-q"; break;
	case 3: arg = "-ql"; break;
	}
	st_resample_getopts(&effp, arg ? 1 : 0, &arg);
	st_resample_start(&effp, inrate, outrate);
}

ResampleRateConverter::~ResampleRateConverter() {
	st_resample_stop(&effp);
}

int ResampleRateConverter::flow(AudioInputStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
	return st_resample_flow(&effp, input, obuf, &osamp, vol);
}

int ResampleRateConverter::drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
	return st_resample_drain(&effp, obuf, &osamp, vol);
}