summaryrefslogtreecommitdiff
path: root/src/dma.c
blob: 4d69b00dce1f67e01f5e2a9a2852f234ad05ff54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
/*
 * Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
 *
 * (c) Copyright 1996 - 2001 Gary Henderson (gary.henderson@ntlworld.com) and
 *                           Jerremy Koot (jkoot@snes9x.com)
 *
 * Super FX C emulator code
 * (c) Copyright 1997 - 1999 Ivar (ivar@snes9x.com) and
 *                           Gary Henderson.
 * Super FX assembler emulator code (c) Copyright 1998 zsKnight and _Demo_.
 *
 * DSP1 emulator code (c) Copyright 1998 Ivar, _Demo_ and Gary Henderson.
 * C4 asm and some C emulation code (c) Copyright 2000 zsKnight and _Demo_.
 * C4 C code (c) Copyright 2001 Gary Henderson (gary.henderson@ntlworld.com).
 *
 * (c) Copyright 2014 - 2016 Daniel De Matteis. (UNDER NO CIRCUMSTANCE 
 * WILL COMMERCIAL RIGHTS EVER BE APPROPRIATED TO ANY PARTY)
 *
 * DOS port code contains the works of other authors. See headers in
 * individual files.
 *
 * Snes9x homepage: http://www.snes9x.com
 *
 * Permission to use, copy, modify and distribute Snes9x in both binary and
 * source form, for non-commercial purposes, is hereby granted without fee,
 * providing that this license information and copyright notice appear with
 * all copies and any derived work.
 *
 * This software is provided 'as-is', without any express or implied
 * warranty. In no event shall the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Snes9x is freeware for PERSONAL USE only. Commercial users should
 * seek permission of the copyright holders first. Commercial use includes
 * charging money for Snes9x or software derived from Snes9x.
 *
 * The copyright holders request that bug fixes and improvements to the code
 * should be forwarded to them so everyone can benefit from the modifications
 * in future versions.
 *
 * Super NES and Super Nintendo Entertainment System are trademarks of
 * Nintendo Co., Limited and its subsidiary companies.
 */
#include "snes9x.h"

#include "memmap.h"
#include "ppu.h"
#include "cpuexec.h"
#include "missing.h"
#include "dma.h"
#include "apu.h"
#include "gfx.h"
#ifdef USE_SA1
#include "sa1.h"
#endif

//SDD1
#include "sdd1emu.h"
uint8 buffer[0x10000];
//SDD1//

extern int HDMA_ModeByteCounts [8];
extern uint8* HDMAMemPointers [8];
extern uint8* HDMABasePointers [8];

static int S9xCompareSDD1IndexEntries(const void* p1, const void* p2)
{
   return (*(uint32*) p1 - * (uint32*) p2);
}

/**********************************************************************************************/
/* S9xDoDMA()                                                                                   */
/* This function preforms the general dma transfer                                            */
/**********************************************************************************************/
void S9xDoDMA(uint8 Channel)
{
   int count, inc;
   uint8 Work;
   bool8 in_sa1_dma = FALSE;
   uint8* in_sdd1_dma = NULL;
   SDMA *d;

   if (Channel > 7 || CPU.InDMA)
      return;

   CPU.InDMA = TRUE;
   d         = &DMA[Channel];

   count     = d->TransferBytes;

   if (count == 0)
      count = 0x10000;

   inc = d->AAddressFixed ? 0 : (!d->AAddressDecrement ? 1 : -1);

   if ((d->ABank == 0x7E || d->ABank == 0x7F) && d->BAddress == 0x80)
   {
      d->AAddress += d->TransferBytes;
      goto update_address;
   }
   switch (d->BAddress)
   {
   case 0x18:
   case 0x19:
      if (IPPU.RenderThisFrame)
#ifdef __DEBUG__
         printf("FLUSH_REDRAW by DMA BAddress %x", d->BAddress);
#endif
      FLUSH_REDRAW();

      break;
   }

   if (Settings.SDD1)
   {
      if (d->AAddressFixed && Memory.FillRAM [0x4801] > 0)
      {
         uint32 address;

         // Hacky support for pre-decompressed S-DD1 data
         inc      = !d->AAddressDecrement ? 1 : -1;
         address  = (((d->ABank << 16) | d->AAddress) & 0xfffff) << 4;

         address |= Memory.FillRAM [0x4804 + ((d->ABank - 0xc0) >> 4)];
         if (Settings.SDD1Pack)
         {
            uint8* in_ptr = GetBasePointer(((d->ABank << 16) | d->AAddress));
            in_ptr += d->AAddress;

            SDD1_decompress(buffer, in_ptr, d->TransferBytes);
            in_sdd1_dma = buffer;
         }
         else
         {
            void* ptr = bsearch(&address, Memory.SDD1Index,
                                Memory.SDD1Entries, 12, S9xCompareSDD1IndexEntries);
            if (ptr)
               in_sdd1_dma = *(uint32*)((uint8*) ptr + 4) + Memory.SDD1Data;
         }
      }

      Memory.FillRAM [0x4801] = 0;
   }

#ifdef USE_SA1
   if (d->BAddress == 0x18 && SA1.in_char_dma && (d->ABank & 0xf0) == 0x40)
#else
   if (d->BAddress == 0x18 && (d->ABank & 0xf0) == 0x40)
#endif
   {
      int i;
      // Perform packed bitmap to PPU character format conversion on the
      // data before transmitting it to V-RAM via-DMA.
      int num_chars = 1 << ((Memory.FillRAM [0x2231] >> 2) & 7);
      int depth = (Memory.FillRAM [0x2231] & 3) == 0 ? 8 :
                  (Memory.FillRAM [0x2231] & 3) == 1 ? 4 : 2;

      int bytes_per_char = 8 * depth;
      int bytes_per_line = depth * num_chars;
      int char_line_bytes = bytes_per_char * num_chars;
      uint32 addr = (d->AAddress / char_line_bytes) * char_line_bytes;
      uint8* base = GetBasePointer((d->ABank << 16) + addr) + addr;
      uint8* buffer = &Memory.ROM [MAX_ROM_SIZE - 0x10000];
      uint8* p = buffer;
      uint32 inc = char_line_bytes - (d->AAddress % char_line_bytes);
      uint32 char_count = inc / bytes_per_char;

      in_sa1_dma = TRUE;

      //printf ("%08x,", base); fflush (stdout);
      //printf ("depth = %d, count = %d, bytes_per_char = %d, bytes_per_line = %d, num_chars = %d, char_line_bytes = %d\n",
      //depth, count, bytes_per_char, bytes_per_line, num_chars, char_line_bytes);

      switch (depth)
      {
      case 2:
         for (i = 0; i < count; i += inc, base += char_line_bytes,
               inc = char_line_bytes, char_count = num_chars)
         {
            uint8* line = base + (num_chars - char_count) * 2;
            uint32 j;
            for (j = 0; j < char_count && p - buffer < count;
                  j++, line += 2)
            {
               uint8* q;
               int l;
               q = line;
               for (l = 0; l < 8; l++, q += bytes_per_line)
               {
                  int b;
                  for (b = 0; b < 2; b++)
                  {
                     uint8 r = *(q + b);
                     *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
                     *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
                     *(p + 0) = (*(p + 0) << 1) | ((r >> 2) & 1);
                     *(p + 1) = (*(p + 1) << 1) | ((r >> 3) & 1);
                     *(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1);
                     *(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1);
                     *(p + 0) = (*(p + 0) << 1) | ((r >> 6) & 1);
                     *(p + 1) = (*(p + 1) << 1) | ((r >> 7) & 1);
                  }
                  p += 2;
               }
            }
         }
         break;
      case 4:
         for (i = 0; i < count; i += inc, base += char_line_bytes,
               inc = char_line_bytes, char_count = num_chars)
         {
            uint8* line = base + (num_chars - char_count) * 4;
            uint32 j;
            for (j = 0; j < char_count && p - buffer < count;
                  j++, line += 4)
            {
               uint8* q = line;
               int l;
               for (l = 0; l < 8; l++, q += bytes_per_line)
               {
                  int b;
                  for (b = 0; b < 4; b++)
                  {
                     uint8 r = *(q + b);
                     *(p +  0) = (*(p +  0) << 1) | ((r >> 0) & 1);
                     *(p +  1) = (*(p +  1) << 1) | ((r >> 1) & 1);
                     *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
                     *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
                     *(p +  0) = (*(p +  0) << 1) | ((r >> 4) & 1);
                     *(p +  1) = (*(p +  1) << 1) | ((r >> 5) & 1);
                     *(p + 16) = (*(p + 16) << 1) | ((r >> 6) & 1);
                     *(p + 17) = (*(p + 17) << 1) | ((r >> 7) & 1);
                  }
                  p += 2;
               }
               p += 32 - 16;
            }
         }
         break;
      case 8:
         for (i = 0; i < count; i += inc, base += char_line_bytes,
               inc = char_line_bytes, char_count = num_chars)
         {
            uint8* line = base + (num_chars - char_count) * 8;
            uint32 j;
            for (j = 0; j < char_count && p - buffer < count;
                  j++, line += 8)
            {
               uint8* q;
               int l;
               q = line;
               for (l = 0; l < 8; l++, q += bytes_per_line)
               {
                  int b;
                  for (b = 0; b < 8; b++)
                  {
                     uint8 r = *(q + b);
                     *(p +  0) = (*(p +  0) << 1) | ((r >> 0) & 1);
                     *(p +  1) = (*(p +  1) << 1) | ((r >> 1) & 1);
                     *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
                     *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
                     *(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1);
                     *(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1);
                     *(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1);
                     *(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1);
                  }
                  p += 2;
               }
               p += 64 - 16;
            }
         }
         break;
      }

   }

   if (!d->TransferDirection)
   {
      uint8 *base;
      uint16 p;

#ifdef VAR_CYCLES
      //reflects extra cycle used by DMA
      CPU.Cycles += 8 * (count + 1);
#else
      //needs fixing for the extra DMA cycle
      CPU.Cycles += (1 + count) + ((1 + count) >> 2);
#endif
      base = GetBasePointer((d->ABank << 16) + d->AAddress);
      p    = d->AAddress;

      if (!base)
         base = Memory.ROM;

      if (in_sa1_dma)
      {
         base = &Memory.ROM [MAX_ROM_SIZE - 0x10000];
         p = 0;
      }

      if (in_sdd1_dma)
      {
         base = in_sdd1_dma;
         p = 0;
      }

      if (inc > 0)
         d->AAddress += count;
      else if (inc < 0)
         d->AAddress -= count;

      if (d->TransferMode == 0 || d->TransferMode == 2)
      {
         switch (d->BAddress)
         {
         case 0x04:
            do
            {
               Work = *(base + p);
               REGISTER_2104(Work);
               p += inc;
            }
            while (--count > 0);
            break;
         case 0x18:
            IPPU.FirstVRAMRead = TRUE;
            if (!PPU.VMA.FullGraphicCount)
            {
               do
               {
                  Work = *(base + p);
                  REGISTER_2118_linear(Work);
                  p += inc;
               }
               while (--count > 0);
            }
            else
            {
               do
               {
                  Work = *(base + p);
                  REGISTER_2118_tile(Work);
                  p += inc;
               }
               while (--count > 0);
            }
            break;
         case 0x19:
            IPPU.FirstVRAMRead = TRUE;
            if (!PPU.VMA.FullGraphicCount)
            {
               do
               {
                  Work = *(base + p);
                  REGISTER_2119_linear(Work);
                  p += inc;
               }
               while (--count > 0);
            }
            else
            {
               do
               {
                  Work = *(base + p);
                  REGISTER_2119_tile(Work);
                  p += inc;
               }
               while (--count > 0);
            }
            break;
         case 0x22:
            do
            {
               Work = *(base + p);
               REGISTER_2122(Work);
               p += inc;
            }
            while (--count > 0);
            break;
         case 0x80:
            do
            {
               Work = *(base + p);
               REGISTER_2180(Work);
               p += inc;
            }
            while (--count > 0);
            break;
         default:
            do
            {
               Work = *(base + p);
               S9xSetPPU(Work, 0x2100 + d->BAddress);
               p += inc;
            }
            while (--count > 0);
            break;
         }
      }
      else if (d->TransferMode == 1 || d->TransferMode == 5)
      {
         if (d->BAddress == 0x18)
         {
            // Write to V-RAM
            IPPU.FirstVRAMRead = TRUE;
            if (!PPU.VMA.FullGraphicCount)
            {
               while (count > 1)
               {
                  Work = *(base + p);
                  REGISTER_2118_linear(Work);
                  p += inc;

                  Work = *(base + p);
                  REGISTER_2119_linear(Work);
                  p += inc;
                  count -= 2;
               }
               if (count == 1)
               {
                  Work = *(base + p);
                  REGISTER_2118_linear(Work);
                  p += inc;
               }
            }
            else
            {
               while (count > 1)
               {
                  Work = *(base + p);
                  REGISTER_2118_tile(Work);
                  p += inc;

                  Work = *(base + p);
                  REGISTER_2119_tile(Work);
                  p += inc;
                  count -= 2;
               }
               if (count == 1)
               {
                  Work = *(base + p);
                  REGISTER_2118_tile(Work);
                  p += inc;
               }
            }
         }
         else
         {
            // DMA mode 1 general case
            while (count > 1)
            {
               Work = *(base + p);
               S9xSetPPU(Work, 0x2100 + d->BAddress);
               p += inc;

               Work = *(base + p);
               S9xSetPPU(Work, 0x2101 + d->BAddress);
               p += inc;
               count -= 2;
            }
            if (count == 1)
            {
               Work = *(base + p);
               S9xSetPPU(Work, 0x2100 + d->BAddress);
               p += inc;
            }
         }
      }
      else if (d->TransferMode == 3)
      {
         do
         {
            Work = *(base + p);
            S9xSetPPU(Work, 0x2100 + d->BAddress);
            p += inc;
            if (count <= 1)
               break;

            Work = *(base + p);
            S9xSetPPU(Work, 0x2100 + d->BAddress);
            p += inc;
            if (count <= 2)
               break;

            Work = *(base + p);
            S9xSetPPU(Work, 0x2101 + d->BAddress);
            p += inc;
            if (count <= 3)
               break;

            Work = *(base + p);
            S9xSetPPU(Work, 0x2101 + d->BAddress);
            p += inc;
            count -= 4;
         }
         while (count > 0);
      }
      else if (d->TransferMode == 4)
      {
         do
         {
            Work = *(base + p);
            S9xSetPPU(Work, 0x2100 + d->BAddress);
            p += inc;
            if (count <= 1)
               break;

            Work = *(base + p);
            S9xSetPPU(Work, 0x2101 + d->BAddress);
            p += inc;
            if (count <= 2)
               break;

            Work = *(base + p);
            S9xSetPPU(Work, 0x2102 + d->BAddress);
            p += inc;
            if (count <= 3)
               break;

            Work = *(base + p);
            S9xSetPPU(Work, 0x2103 + d->BAddress);
            p += inc;
            count -= 4;
         }
         while (count > 0);
      }
   }
   else
   {
      do
      {
         switch (d->TransferMode)
         {
         case 0:
         case 2:
#ifndef VAR_CYCLES
            CPU.Cycles += 1;
#endif
            Work = S9xGetPPU(0x2100 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            --count;
            break;

         case 1:
         case 5:
#ifndef VAR_CYCLES
            CPU.Cycles += 3;
#endif
            Work = S9xGetPPU(0x2100 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            if (!--count)
               break;

            Work = S9xGetPPU(0x2101 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            count--;
            break;

         case 3:
#ifndef VAR_CYCLES
            CPU.Cycles += 6;
#endif
            Work = S9xGetPPU(0x2100 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            if (!--count)
               break;

            Work = S9xGetPPU(0x2100 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            if (!--count)
               break;

            Work = S9xGetPPU(0x2101 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            if (!--count)
               break;

            Work = S9xGetPPU(0x2101 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            count--;
            break;

         case 4:
#ifndef VAR_CYCLES
            CPU.Cycles += 6;
#endif
            Work = S9xGetPPU(0x2100 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            if (!--count)
               break;

            Work = S9xGetPPU(0x2101 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            if (!--count)
               break;

            Work = S9xGetPPU(0x2102 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            if (!--count)
               break;

            Work = S9xGetPPU(0x2103 + d->BAddress);
            S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
            d->AAddress += inc;
            count--;
            break;

         default:
            count = 0;
            break;
         }
      }
      while (count);
   }

   //#ifdef SPC700_C
#ifdef SPC700_SHUTDOWN
   CPU.APU_APUExecuting = Settings.APUEnabled;
#endif
   asm_APU_EXECUTE(1); // execute but only in normal mode
   //#endif
   while (CPU.Cycles > CPU.NextEvent)
      S9xDoHBlankProcessing();

update_address:
   // Super Punch-Out requires that the A-BUS address be updated after the
   // DMA transfer.
   Memory.FillRAM[0x4302 + (Channel << 4)] = (uint8) d->AAddress;
   Memory.FillRAM[0x4303 + (Channel << 4)] = d->AAddress >> 8;

   // Secret of the Mana requires that the DMA bytes transfer count be set to
   // zero when DMA has completed.
   Memory.FillRAM [0x4305 + (Channel << 4)] = 0;
   Memory.FillRAM [0x4306 + (Channel << 4)] = 0;

   DMA[Channel].IndirectAddress = 0;
   d->TransferBytes = 0;

   CPU.InDMA = FALSE;
}

void S9xStartHDMA(void)
{
   uint8 i;
   //if (Settings.DisableHDMA)
   //IPPU.HDMA = 0;
   //else
   missing.hdma_this_frame = IPPU.HDMA = Memory.FillRAM [0x420c];

   IPPU.HDMAStarted = TRUE;

   for (i = 0; i < 8; i++)
   {
      if (IPPU.HDMA & (1 << i))
      {
         DMA [i].LineCount = 0;
         DMA [i].FirstLine = TRUE;
         DMA [i].Address = DMA [i].AAddress;
      }
      HDMAMemPointers [i] = NULL;
   }
}

uint8 S9xDoHDMA(uint8 byte)
{
   SDMA* p = &DMA [0];

   int d = 0;

   uint8 mask;
   for (mask = 1; mask; mask <<= 1, p++, d++)
   {
      if (byte & mask)
      {
         if (!p->LineCount)
         {
            uint8 line;
            line = S9xGetByte((p->ABank << 16) + p->Address);
            if (line == 0x80)
            {
               p->Repeat = TRUE;
               p->LineCount = 128;
            }
            else
            {
               p->Repeat = !(line & 0x80);
               p->LineCount = line & 0x7f;
            }

            // Disable H-DMA'ing into V-RAM (register 2118) for Hook
            if (!p->LineCount || p->BAddress == 0x18)
            {
               byte &= ~mask;
               p->IndirectAddress += HDMAMemPointers [d] - HDMABasePointers [d];
               Memory.FillRAM [0x4305 + (d << 4)] = (uint8) p->IndirectAddress;
               Memory.FillRAM [0x4306 + (d << 4)] = p->IndirectAddress >> 8;
               continue;
            }

            p->Address++;
            p->FirstLine = 1;
            if (p->HDMAIndirectAddressing)
            {
               p->IndirectBank = Memory.FillRAM [0x4307 + (d << 4)];
               p->IndirectAddress = S9xGetWord((p->ABank << 16) + p->Address);
               p->Address += 2;
            }
            else
            {
               p->IndirectBank = p->ABank;
               p->IndirectAddress = p->Address;
            }
            HDMABasePointers [d] = HDMAMemPointers [d] =
                                      S9xGetMemPointer((p->IndirectBank << 16) + p->IndirectAddress);
         }
         else
         {

            if (!HDMAMemPointers [d])
            {
               if (!p->HDMAIndirectAddressing)
               {
                  p->IndirectBank = p->ABank;
                  p->IndirectAddress = p->Address;
               }

               if (!(HDMABasePointers [d] = HDMAMemPointers [d] =
                                               S9xGetMemPointer((p->IndirectBank << 16) + p->IndirectAddress)))
               {
                  byte &= ~mask;
                  continue;
               }
               // Uncommenting the following line breaks Punchout - it starts
               // H-DMA during the frame.
               //p->FirstLine = TRUE;
            }
         }
         if (p->Repeat && !p->FirstLine)
         {
            p->LineCount--;
            continue;
         }
         switch (p->TransferMode)
         {
         case 0:
#ifndef VAR_CYCLES
            CPU.Cycles += 1;
#else
            CPU.Cycles += 8;
#endif
            S9xSetPPU(*HDMAMemPointers [d]++, 0x2100 + p->BAddress);
            break;
         case 1:
         case 5:
#ifndef VAR_CYCLES
            CPU.Cycles += 3;
#else
            CPU.Cycles += 16;
#endif
            S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
            S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress);
            HDMAMemPointers [d] += 2;
            break;
         case 2:
         case 6:
#ifndef VAR_CYCLES
            CPU.Cycles += 3;
#else
            CPU.Cycles += 16;
#endif
            S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
            S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2100 + p->BAddress);
            HDMAMemPointers [d] += 2;
            break;
         case 3:
         case 7:
#ifndef VAR_CYCLES
            CPU.Cycles += 6;
#else
            CPU.Cycles += 32;
#endif
            S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
            S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2100 + p->BAddress);
            S9xSetPPU(*(HDMAMemPointers [d] + 2), 0x2101 + p->BAddress);
            S9xSetPPU(*(HDMAMemPointers [d] + 3), 0x2101 + p->BAddress);
            HDMAMemPointers [d] += 4;
            break;
         case 4:
#ifndef VAR_CYCLES
            CPU.Cycles += 6;
#else
            CPU.Cycles += 32;
#endif
            S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
            S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress);
            S9xSetPPU(*(HDMAMemPointers [d] + 2), 0x2102 + p->BAddress);
            S9xSetPPU(*(HDMAMemPointers [d] + 3), 0x2103 + p->BAddress);
            HDMAMemPointers [d] += 4;
            break;
         }
         if (!p->HDMAIndirectAddressing)
            p->Address += HDMA_ModeByteCounts [p->TransferMode];
         p->FirstLine = FALSE;
         p->LineCount--;
      }
   }
   return (byte);
}

void S9xResetDMA()
{
   int c, d;
   for (d = 0; d < 8; d++)
   {
      DMA [d].TransferDirection = FALSE;
      DMA [d].HDMAIndirectAddressing = FALSE;
      DMA [d].AAddressFixed = TRUE;
      DMA [d].AAddressDecrement = FALSE;
      DMA [d].TransferMode = 0xff;
      DMA [d].ABank = 0xff;
      DMA [d].AAddress = 0xffff;
      DMA [d].Address = 0xffff;
      DMA [d].BAddress = 0xff;
      DMA [d].TransferBytes = 0xffff;
   }
   for (c = 0x4300; c < 0x4380; c += 0x10)
   {
      for (d = c; d < c + 12; d++)
         Memory.FillRAM [d] = 0xff;

      Memory.FillRAM [c + 0xf] = 0xff;
   }
}