aboutsummaryrefslogtreecommitdiff
path: root/source/dsp2emu.c
blob: d1b6410a70e345c1bd0f2b81970b376306cd131a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include "../copyright"

uint16_t DSP2Op09Word1 = 0;
uint16_t DSP2Op09Word2 = 0;
bool DSP2Op05HasLen = false;
int32_t DSP2Op05Len = 0;
bool DSP2Op06HasLen = false;
int32_t DSP2Op06Len = 0;
uint8_t DSP2Op05Transparent = 0;

void DSP2_Op05()
{
   uint8_t color;
   // Overlay bitmap with transparency.
   // Input:
   //
   //   Bitmap 1:  i[0] <=> i[size-1]
   //   Bitmap 2:  i[size] <=> i[2*size-1]
   //
   // Output:
   //
   //   Bitmap 3:  o[0] <=> o[size-1]
   //
   // Processing:
   //
   //   Process all 4-bit pixels (nibbles) in the bitmap
   //
   //   if ( BM2_pixel == transparent_color )
   //      pixelout = BM1_pixel
   //   else
   //      pixelout = BM2_pixel

   // The max size bitmap is limited to 255 because the size parameter is a byte
   // I think size=0 is an error.  The behavior of the chip on size=0 is to
   // return the last value written to DR if you read DR on Op05 with
   // size = 0.  I don't think it's worth implementing this quirk unless it's
   // proven necessary.

   int32_t n;
   uint8_t c1;
   uint8_t c2;
   uint8_t* p1 = DSP1.parameters;
   uint8_t* p2 = &DSP1.parameters[DSP2Op05Len];
   uint8_t* p3 = DSP1.output;

   color = DSP2Op05Transparent & 0x0f;

   for (n = 0; n < DSP2Op05Len; n++)
   {
      c1 = *p1++;
      c2 = *p2++;
      *p3++ = (((c2 >> 4) == color) ? c1 & 0xf0 : c2 & 0xf0) |
              (((c2 & 0x0f) == color) ? c1 & 0x0f : c2 & 0x0f);
   }
}

void DSP2_Op01()
{
   // Op01 size is always 32 bytes input and output.
   // The hardware does strange things if you vary the size.

   int32_t j;
   uint8_t c0, c1, c2, c3;
   uint8_t* p1 = DSP1.parameters;
   uint8_t* p2a = DSP1.output;
   uint8_t* p2b = &DSP1.output[16]; // halfway

   // Process 8 blocks of 4 bytes each

   for (j = 0; j < 8; j++)
   {
      c0 = *p1++;
      c1 = *p1++;
      c2 = *p1++;
      c3 = *p1++;

      *p2a++ = (c0 & 0x10) << 3 |
               (c0 & 0x01) << 6 |
               (c1 & 0x10) << 1 |
               (c1 & 0x01) << 4 |
               (c2 & 0x10) >> 1 |
               (c2 & 0x01) << 2 |
               (c3 & 0x10) >> 3 |
               (c3 & 0x01);

      *p2a++ = (c0 & 0x20) << 2 |
               (c0 & 0x02) << 5 |
               (c1 & 0x20)      |
               (c1 & 0x02) << 3 |
               (c2 & 0x20) >> 2 |
               (c2 & 0x02) << 1 |
               (c3 & 0x20) >> 4 |
               (c3 & 0x02) >> 1;

      *p2b++ = (c0 & 0x40) << 1 |
               (c0 & 0x04) << 4 |
               (c1 & 0x40) >> 1 |
               (c1 & 0x04) << 2 |
               (c2 & 0x40) >> 3 |
               (c2 & 0x04)      |
               (c3 & 0x40) >> 5 |
               (c3 & 0x04) >> 2;


      *p2b++ = (c0 & 0x80)      |
               (c0 & 0x08) << 3 |
               (c1 & 0x80) >> 2 |
               (c1 & 0x08) << 1 |
               (c2 & 0x80) >> 4 |
               (c2 & 0x08) >> 1 |
               (c3 & 0x80) >> 6 |
               (c3 & 0x08) >> 3;
   }
   return;
}

void DSP2_Op06()
{
   // Input:
   //    size
   //    bitmap

   int32_t i, j;

   for (i = 0, j = DSP2Op06Len - 1; i < DSP2Op06Len; i++, j--)
      DSP1.output[j] = (DSP1.parameters[i] << 4) | (DSP1.parameters[i] >> 4);
}

bool DSP2Op0DHasLen = false;
int32_t DSP2Op0DOutLen = 0;
int32_t DSP2Op0DInLen = 0;

#ifndef DSP2_BIT_ACCURRATE_CODE

// Scale bitmap based on input length out output length

void DSP2_Op0D()
{
   // (Modified) Overload's algorithm - use this unless doing hardware testing

   int32_t i;

   for(i = 0 ; i < DSP2Op0DOutLen ; i++)
   {
      int32_t j = i << 1;
      int32_t pixel_offset_low = ((j * DSP2Op0DInLen) / DSP2Op0DOutLen) >> 1;
      int32_t pixel_offset_high = (((j + 1) * DSP2Op0DInLen) / DSP2Op0DOutLen) >> 1;
      uint8_t pixel_low = DSP1.parameters[pixel_offset_low] >> 4;
      uint8_t pixel_high = DSP1.parameters[pixel_offset_high] & 0x0f;
      DSP1.output[i] = (pixel_low << 4) | pixel_high;
   }
}

#else

void DSP2_Op0D()
{
   // Bit accurate hardware algorithm - uses fixed point math
   // This should match the DSP2 Op0D output exactly
   // I wouldn't recommend using this unless you're doing hardware debug.
   // In some situations it has small visual artifacts that
   // are not readily apparent on a TV screen but show up clearly
   // on a monitor.  Use Overload's scaling instead.
   // This is for hardware verification testing.
   //
   // One note:  the HW can do odd byte scaling but since we divide
   // by two to get the count of bytes this won't work well for
   // odd byte scaling (in any of the current algorithm implementations).
   // So far I haven't seen Dungeon Master use it.
   // If it does we can adjust the parameters and code to work with it


   uint32_t multiplier;
   uint32_t pixloc;
   int32_t i, j;
   uint8_t pixelarray[512];

   if (DSP2Op0DInLen <= DSP2Op0DOutLen)
      multiplier = 0x10000;   // In our self defined fixed point 0x10000 == 1
   else
      multiplier = (DSP2Op0DInLen << 17) / ((DSP2Op0DOutLen << 1) + 1);

   pixloc = 0;
   for (i = 0; i < DSP2Op0DOutLen * 2; i++)
   {
      j = pixloc >> 16;

      if (j & 1)
         pixelarray[i] = DSP1.parameters[j >> 1] & 0x0f;
      else
         pixelarray[i] = (DSP1.parameters[j >> 1] & 0xf0) >> 4;

      pixloc += multiplier;
   }

   for (i = 0; i < DSP2Op0DOutLen; i++)
      DSP1.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}

#endif