aboutsummaryrefslogtreecommitdiff
path: root/source/dsp2emu.c
blob: 453ab6a16a3bedf74d35d77e989fc5b126fbed78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#include "../copyright"

uint16_t DSP2Op09Word1 = 0;
uint16_t DSP2Op09Word2 = 0;
bool DSP2Op05HasLen = false;
int DSP2Op05Len = 0;
bool DSP2Op06HasLen = false;
int DSP2Op06Len = 0;
uint8_t DSP2Op05Transparent = 0;

void DSP2_Op05()
{
   uint8_t color;
   // Overlay bitmap with transparency.
   // Input:
   //
   //   Bitmap 1:  i[0] <=> i[size-1]
   //   Bitmap 2:  i[size] <=> i[2*size-1]
   //
   // Output:
   //
   //   Bitmap 3:  o[0] <=> o[size-1]
   //
   // Processing:
   //
   //   Process all 4-bit pixels (nibbles) in the bitmap
   //
   //   if ( BM2_pixel == transparent_color )
   //      pixelout = BM1_pixel
   //   else
   //      pixelout = BM2_pixel

   // The max size bitmap is limited to 255 because the size parameter is a byte
   // I think size=0 is an error.  The behavior of the chip on size=0 is to
   // return the last value written to DR if you read DR on Op05 with
   // size = 0.  I don't think it's worth implementing this quirk unless it's
   // proven necessary.

   int n;
   unsigned char c1;
   unsigned char c2;
   unsigned char* p1 = DSP1.parameters;
   unsigned char* p2 = &DSP1.parameters[DSP2Op05Len];
   unsigned char* p3 = DSP1.output;

   color = DSP2Op05Transparent & 0x0f;

   for (n = 0; n < DSP2Op05Len; n++)
   {
      c1 = *p1++;
      c2 = *p2++;
      *p3++ = (((c2 >> 4) == color) ? c1 & 0xf0 : c2 & 0xf0) |
              (((c2 & 0x0f) == color) ? c1 & 0x0f : c2 & 0x0f);
   }
}

void DSP2_Op01()
{
   // Op01 size is always 32 bytes input and output.
   // The hardware does strange things if you vary the size.

   int j;
   unsigned char c0, c1, c2, c3;
   unsigned char* p1 = DSP1.parameters;
   unsigned char* p2a = DSP1.output;
   unsigned char* p2b = &DSP1.output[16]; // halfway

   // Process 8 blocks of 4 bytes each

   for (j = 0; j < 8; j++)
   {
      c0 = *p1++;
      c1 = *p1++;
      c2 = *p1++;
      c3 = *p1++;

      *p2a++ = (c0 & 0x10) << 3 |
               (c0 & 0x01) << 6 |
               (c1 & 0x10) << 1 |
               (c1 & 0x01) << 4 |
               (c2 & 0x10) >> 1 |
               (c2 & 0x01) << 2 |
               (c3 & 0x10) >> 3 |
               (c3 & 0x01);

      *p2a++ = (c0 & 0x20) << 2 |
               (c0 & 0x02) << 5 |
               (c1 & 0x20)      |
               (c1 & 0x02) << 3 |
               (c2 & 0x20) >> 2 |
               (c2 & 0x02) << 1 |
               (c3 & 0x20) >> 4 |
               (c3 & 0x02) >> 1;

      *p2b++ = (c0 & 0x40) << 1 |
               (c0 & 0x04) << 4 |
               (c1 & 0x40) >> 1 |
               (c1 & 0x04) << 2 |
               (c2 & 0x40) >> 3 |
               (c2 & 0x04)      |
               (c3 & 0x40) >> 5 |
               (c3 & 0x04) >> 2;


      *p2b++ = (c0 & 0x80)      |
               (c0 & 0x08) << 3 |
               (c1 & 0x80) >> 2 |
               (c1 & 0x08) << 1 |
               (c2 & 0x80) >> 4 |
               (c2 & 0x08) >> 1 |
               (c3 & 0x80) >> 6 |
               (c3 & 0x08) >> 3;
   }
   return;
}

void DSP2_Op06()
{
   // Input:
   //    size
   //    bitmap

   int   i, j;

   for (i = 0, j = DSP2Op06Len - 1; i < DSP2Op06Len; i++, j--)
      DSP1.output[j] = (DSP1.parameters[i] << 4) | (DSP1.parameters[i] >> 4);
}

bool DSP2Op0DHasLen = false;
int DSP2Op0DOutLen = 0;
int DSP2Op0DInLen = 0;

#ifndef DSP2_BIT_ACCURRATE_CODE

// Scale bitmap based on input length out output length

void DSP2_Op0D()
{
   // Overload's algorithm - use this unless doing hardware testing

   // One note:  the HW can do odd byte scaling but since we divide
   // by two to get the count of bytes this won't work well for
   // odd byte scaling (in any of the current algorithm implementations).
   // So far I haven't seen Dungeon Master use it.
   // If it does we can adjust the parameters and code to work with it

   int i;
   int pixel_offset;
   uint8_t pixelarray[512];

   for (i = 0; i < DSP2Op0DOutLen * 2; i++)
   {
      pixel_offset = (i * DSP2Op0DInLen) / DSP2Op0DOutLen;
      if ((pixel_offset & 1) == 0)
         pixelarray[i] = DSP1.parameters[pixel_offset >> 1] >> 4;
      else
         pixelarray[i] = DSP1.parameters[pixel_offset >> 1] & 0x0f;
   }

   for (i = 0; i < DSP2Op0DOutLen; i++)
      DSP1.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}

#else

void DSP2_Op0D()
{
   // Bit accurate hardware algorithm - uses fixed point math
   // This should match the DSP2 Op0D output exactly
   // I wouldn't recommend using this unless you're doing hardware debug.
   // In some situations it has small visual artifacts that
   // are not readily apparent on a TV screen but show up clearly
   // on a monitor.  Use Overload's scaling instead.
   // This is for hardware verification testing.
   //
   // One note:  the HW can do odd byte scaling but since we divide
   // by two to get the count of bytes this won't work well for
   // odd byte scaling (in any of the current algorithm implementations).
   // So far I haven't seen Dungeon Master use it.
   // If it does we can adjust the parameters and code to work with it


   uint32_t multiplier;   // Any size int >= 32-bits
   uint32_t pixloc;    // match size of multiplier
   int   i, j;
   uint8_t pixelarray[512];

   if (DSP2Op0DInLen <= DSP2Op0DOutLen)
      multiplier = 0x10000;   // In our self defined fixed point 0x10000 == 1
   else
      multiplier = (DSP2Op0DInLen << 17) / ((DSP2Op0DOutLen << 1) + 1);

   pixloc = 0;
   for (i = 0; i < DSP2Op0DOutLen * 2; i++)
   {
      j = pixloc >> 16;

      if (j & 1)
         pixelarray[i] = DSP1.parameters[j >> 1] & 0x0f;
      else
         pixelarray[i] = (DSP1.parameters[j >> 1] & 0xf0) >> 4;

      pixloc += multiplier;
   }

   for (i = 0; i < DSP2Op0DOutLen; i++)
      DSP1.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}

#endif

#if 0 // Probably no reason to use this code - it's not quite bit accurate and it doesn't look as good as Overload's algorithm

void DSP2_Op0D()
{
   // Float implementation of Neviksti's algorithm
   // This is the right algorithm to match the DSP2 bits but the precision
   // of the PC float does not match the precision of the fixed point math
   // on the DSP2 causing occasional one off data mismatches (which should
   // be no problem because its just a one pixel difference in a scaled image
   // to be displayed).

   float multiplier;
   float pixloc;
   int   i, j;
   uint8_t pixelarray[512];

   if (DSP2Op0DInLen <= DSP2Op0DOutLen)
      multiplier = (float) 1.0;
   else
      multiplier = (float)((DSP2Op0DInLen * 2.0) / (DSP2Op0DOutLen * 2.0 + 1.0));

   pixloc = 0.0;
   for (i = 0; i < DSP2Op0DOutLen * 2; i++)
   {
      // j = (int)(i * multiplier);
      j = (int) pixloc;

      if (j & 1)
         pixelarray[i] = DSP1.parameters[j >> 1] & 0x0f;
      else
         pixelarray[i] = (DSP1.parameters[j >> 1] & 0xf0) >> 4;

      pixloc += multiplier;   // use an add in the loop instead of multiply to increase loop speed
   }

   for (i = 0; i < DSP2Op0DOutLen; i++)
      DSP1.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}

#endif