aboutsummaryrefslogtreecommitdiff
path: root/sound/softsynth
diff options
context:
space:
mode:
authorJohannes Schickel2009-05-05 21:47:12 +0000
committerJohannes Schickel2009-05-05 21:47:12 +0000
commit08581ed69811d50e20eab2a3b491a49b0a494d60 (patch)
tree51aee65255a47ba721aaee5f52770d0453fad2a2 /sound/softsynth
parentd9e0499a36004023dea3dfd95312b1d91eca5bbc (diff)
downloadscummvm-rg350-08581ed69811d50e20eab2a3b491a49b0a494d60.tar.gz
scummvm-rg350-08581ed69811d50e20eab2a3b491a49b0a494d60.tar.bz2
scummvm-rg350-08581ed69811d50e20eab2a3b491a49b0a494d60.zip
AdLib emulator changes part2:
- Add new OPL emulator API (and legacy access API) in sound/fmopl.h - Add DOSBox OPL emulator. - Update MAME OPL emulator for the API changes. svn-id: r40334
Diffstat (limited to 'sound/softsynth')
-rw-r--r--sound/softsynth/opl/dosbox.cpp355
-rw-r--r--sound/softsynth/opl/dosbox.h122
-rw-r--r--sound/softsynth/opl/mame.cpp46
-rw-r--r--sound/softsynth/opl/mame.h34
-rw-r--r--sound/softsynth/opl/opl.cpp1445
-rw-r--r--sound/softsynth/opl/opl.h197
6 files changed, 2193 insertions, 6 deletions
diff --git a/sound/softsynth/opl/dosbox.cpp b/sound/softsynth/opl/dosbox.cpp
new file mode 100644
index 0000000000..60bc417cdd
--- /dev/null
+++ b/sound/softsynth/opl/dosbox.cpp
@@ -0,0 +1,355 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL$
+ * $Id$
+ */
+
+/*
+ * Based on AdLib emulation code of DOSBox
+ * Copyright (C) 2002-2009 The DOSBox Team
+ * Licensed under GPLv2+
+ * http://www.dosbox.com
+ */
+
+#ifndef DISABLE_DOSBOX_OPL
+
+#include "dosbox.h"
+
+#include "common/system.h"
+
+#include <math.h>
+#include <string.h>
+
+namespace OPL {
+namespace DOSBox {
+
+Timer::Timer() {
+ masked = false;
+ overflow = false;
+ enabled = false;
+ counter = 0;
+ delay = 0;
+}
+
+void Timer::update(double time) {
+ if (!enabled || !delay)
+ return;
+ double deltaStart = time - startTime;
+ // Only set the overflow flag when not masked
+ if (deltaStart >= 0 && !masked)
+ overflow = 1;
+}
+
+void Timer::reset(double time) {
+ overflow = false;
+ if (!delay || !enabled)
+ return;
+ double delta = (time - startTime);
+ double rem = fmod(delta, delay);
+ double next = delay - rem;
+ startTime = time + next;
+}
+
+void Timer::stop() {
+ enabled = false;
+}
+
+void Timer::start(double time, int scale) {
+ //Don't enable again
+ if (enabled)
+ return;
+ enabled = true;
+ delay = 0.001 * (256 - counter) * scale;
+ startTime = time + delay;
+}
+
+bool Chip::write(uint32 reg, uint8 val) {
+ switch (reg) {
+ case 0x02:
+ timer[0].counter = val;
+ return true;
+ case 0x03:
+ timer[1].counter = val;
+ return true;
+ case 0x04:
+ double time = g_system->getMillis() / 1000.0;
+
+ if (val & 0x80) {
+ timer[0].reset(time);
+ timer[1].reset(time);
+ } else {
+ timer[0].update(time);
+ timer[1].update(time);
+
+ if (val & 0x1)
+ timer[0].start(time, 80);
+ else
+ timer[0].stop();
+
+ timer[0].masked = (val & 0x40) > 0;
+
+ if (timer[0].masked)
+ timer[0].overflow = false;
+
+ if (val & 0x2)
+ timer[1].start(time, 320);
+ else
+ timer[1].stop();
+
+ timer[1].masked = (val & 0x20) > 0;
+
+ if (timer[1].masked)
+ timer[1].overflow = false;
+ }
+ return true;
+ }
+ return false;
+}
+
+uint8 Chip::read() {
+ double time = g_system->getMillis() / 1000.0;
+
+ timer[0].update(time);
+ timer[1].update(time);
+
+ uint8 ret = 0;
+ // Overflow won't be set if a channel is masked
+ if (timer[0].overflow) {
+ ret |= 0x40;
+ ret |= 0x80;
+ }
+ if (timer[1].overflow) {
+ ret |= 0x20;
+ ret |= 0x80;
+ }
+ return ret;
+}
+
+namespace OPL2 {
+#include "opl.cpp"
+
+struct Handler : public DOSBox::Handler {
+ void writeReg(uint32 reg, uint8 val) {
+ adlib_write(reg, val);
+ }
+
+ uint32 writeAddr(uint32 port, uint8 val) {
+ return val;
+ }
+
+ void generate(int16 *chan, uint samples) {
+ adlib_getsample(chan, samples);
+ }
+
+ void init(uint rate) {
+ adlib_init(rate);
+ }
+};
+} // end of namespace OPL2
+
+namespace OPL3 {
+#define OPLTYPE_IS_OPL3
+#include "opl.cpp"
+
+struct Handler : public DOSBox::Handler {
+ void writeReg(uint32 reg, uint8 val) {
+ adlib_write(reg,val);
+ }
+
+ uint32 writeAddr(uint32 port, uint8 val) {
+ adlib_write_index(port, val);
+ return index;
+ }
+
+ void generate(int16 *chan, uint samples) {
+ adlib_getsample(chan, samples);
+ }
+
+ void init(uint rate) {
+ adlib_init(rate);
+ }
+};
+} // end of namespace OPL3
+
+OPL_DOSBox::OPL_DOSBox(kOplType type) : _type(type), _rate(0), _handler(0) {
+}
+
+OPL_DOSBox::~OPL_DOSBox() {
+ free();
+}
+
+void OPL_DOSBox::free() {
+ delete _handler;
+ _handler = 0;
+}
+
+bool OPL_DOSBox::init(int rate) {
+ free();
+
+ memset(&_reg, 0, sizeof(_reg));
+ memset(_chip, 0, sizeof(_chip));
+
+ switch (_type) {
+ case kOpl2:
+ _handler = new OPL2::Handler();
+ break;
+
+ case kDualOpl2:
+ case kOpl3:
+ _handler = new OPL3::Handler();
+ break;
+
+ default:
+ return false;
+ }
+
+ _handler->init(rate);
+ _rate = rate;
+ return true;
+}
+
+void OPL_DOSBox::reset() {
+ init(_rate);
+}
+
+void OPL_DOSBox::write(int port, int val) {
+ if (port&1) {
+ switch (_type) {
+ case kOpl2:
+ case kOpl3:
+ if (!_chip[0].write(_reg.normal, val))
+ _handler->writeReg(_reg.normal, val);
+ break;
+ case kDualOpl2:
+ // Not a 0x??8 port, then write to a specific port
+ if (!(port & 0x8)) {
+ byte index = (port & 2) >> 1;
+ dualWrite(index, _reg.dual[index], val);
+ } else {
+ //Write to both ports
+ dualWrite(0, _reg.dual[0], val);
+ dualWrite(1, _reg.dual[1], val);
+ }
+ break;
+ }
+ } else {
+ // Ask the handler to write the address
+ // Make sure to clip them in the right range
+ switch (_type) {
+ case kOpl2:
+ _reg.normal = _handler->writeAddr(port, val) & 0xff;
+ break;
+ case kOpl3:
+ _reg.normal = _handler->writeAddr(port, val) & 0x1ff;
+ break;
+ case kDualOpl2:
+ // Not a 0x?88 port, when write to a specific side
+ if (!(port & 0x8)) {
+ byte index = (port & 2) >> 1;
+ _reg.dual[index] = val & 0xff;
+ } else {
+ _reg.dual[0] = val & 0xff;
+ _reg.dual[1] = val & 0xff;
+ }
+ break;
+ }
+ }
+}
+
+byte OPL_DOSBox::read(int port) {
+ switch (_type) {
+ case kOpl2:
+ if (!(port & 1))
+ //Make sure the low bits are 6 on opl2
+ return _chip[0].read() | 0x6;
+ break;
+ case kOpl3:
+ if (!(port & 1))
+ return _chip[0].read();
+ break;
+ case kDualOpl2:
+ // Only return for the lower ports
+ if (port & 1)
+ return 0xff;
+ // Make sure the low bits are 6 on opl2
+ return _chip[(port >> 1) & 1].read() | 0x6;
+ }
+ return 0;
+}
+
+void OPL_DOSBox::writeReg(int r, int v) {
+ byte tempReg = 0;
+ switch (_type) {
+ case kOpl2:
+ case kDualOpl2:
+ case kOpl3:
+ // We can't use _handler->writeReg here directly, since it would miss timer changes.
+
+ // Backup old setup register
+ tempReg = _reg.normal;
+
+ // We need to set the register we want to write to via port 0x388
+ write(0x388, r);
+ // Do the real writing to the register
+ write(0x389, v);
+ // Restore the old register
+ write(0x388, tempReg);
+ break;
+ };
+}
+
+void OPL_DOSBox::dualWrite(uint8 index, uint8 reg, uint8 val) {
+ // Make sure you don't use opl3 features
+ // Don't allow write to disable opl3
+ if (reg == 5)
+ return;
+
+ // Only allow 4 waveforms
+ if (reg >= 0xE0)
+ val &= 3;
+
+ // Write to the timer?
+ if (_chip[index].write(reg, val))
+ return;
+
+ // Enabling panning
+ if (reg >= 0xc0 && reg < 0xc8) {
+ val &= 7;
+ val |= index ? 0xA0 : 0x50;
+ }
+
+ uint32 fullReg = reg + (index ? 0x100 : 0);
+ _handler->writeReg(fullReg, val);
+}
+
+void OPL_DOSBox::readBuffer(int16 *buffer, int length) {
+ // For stereo OPL cards, we divide the sample count by 2,
+ // to match stereo AudioStream behavior.
+ if (_type != kOpl2)
+ length >>= 1;
+
+ _handler->generate(buffer, length);
+}
+
+} // end of namespace DOSBox
+} // end of namespace OPL
+
+#endif // !DISABLE_DOSBOX_ADLIB
diff --git a/sound/softsynth/opl/dosbox.h b/sound/softsynth/opl/dosbox.h
new file mode 100644
index 0000000000..f09ddf85e4
--- /dev/null
+++ b/sound/softsynth/opl/dosbox.h
@@ -0,0 +1,122 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL$
+ * $Id$
+ */
+
+/*
+ * Based on OPL emulation code of DOSBox
+ * Copyright (C) 2002-2009 The DOSBox Team
+ * Licensed under GPLv2+
+ * http://www.dosbox.com
+ */
+
+#ifndef SOUND_SOFTSYNTH_OPL_DOSBOX_H
+#define SOUND_SOFTSYNTH_OPL_DOSBOX_H
+
+#ifndef DISABLE_DOSBOX_OPL
+
+#include "sound/fmopl.h"
+
+namespace OPL {
+namespace DOSBox {
+
+class Handler;
+
+struct Timer {
+ double startTime;
+ double delay;
+ bool enabled, overflow, masked;
+ uint8 counter;
+
+ Timer();
+
+ //Call update before making any further changes
+ void update(double time);
+
+ //On a reset make sure the start is in sync with the next cycle
+ void reset(double time);
+
+ void stop();
+
+ void start(double time, int scale);
+};
+
+struct Chip {
+ //Last selected register
+ Timer timer[2];
+ //Check for it being a write to the timer
+ bool write(uint32 addr, uint8 val);
+ //Read the current timer state, will use current double
+ uint8 read();
+};
+
+class Handler {
+public:
+ virtual ~Handler() {}
+
+ // Write an address to a chip, returns the address the chip sets
+ virtual uint32 writeAddr(uint32 port, uint8 val) = 0;
+ // Write to a specific register in the chip
+ virtual void writeReg(uint32 addr, uint8 val) = 0;
+ // Generate a certain amount of samples
+ virtual void generate(int16 *chan, uint samples) = 0;
+ // Initialize at a specific sample rate and mode
+ virtual void init(uint rate) = 0;
+};
+
+class OPL_DOSBox : public OPL {
+private:
+ kOplType _type;
+ uint _rate;
+
+ Handler *_handler;
+ Chip _chip[2];
+ union {
+ uint16 normal;
+ uint8 dual[2];
+ } _reg;
+
+ void free();
+ void dualWrite(uint8 index, uint8 reg, uint8 val);
+public:
+ OPL_DOSBox(kOplType type);
+ ~OPL_DOSBox();
+
+ bool init(int rate);
+ void reset();
+
+ void write(int a, int v);
+ byte read(int a);
+
+ void writeReg(int r, int v);
+
+ void readBuffer(int16 *buffer, int length);
+ bool isStereo() const { return _type != kOpl2; }
+};
+
+} // end of namespace DOSBox
+} // end of namespace OPL
+
+#endif // !DISABLE_DOSBOX_OPL
+
+#endif
+
diff --git a/sound/softsynth/opl/mame.cpp b/sound/softsynth/opl/mame.cpp
index 4834e586c3..6427469a59 100644
--- a/sound/softsynth/opl/mame.cpp
+++ b/sound/softsynth/opl/mame.cpp
@@ -31,12 +31,48 @@
#include <stdarg.h>
#include <math.h>
-#include "sound/fmopl.h"
+#include "mame.h"
#if defined (_WIN32_WCE) || defined (__SYMBIAN32__) || defined(PALMOS_MODE) || defined(__GP32__) || defined(GP2X) || defined (__MAEMO__) || defined(__DS__) || defined (__MINT__)
#include "common/config-manager.h"
#endif
+namespace OPL {
+namespace MAME {
+
+OPL_MAME::~OPL_MAME() {
+ MAME::OPLDestroy(_opl);
+ _opl = 0;
+}
+
+bool OPL_MAME::init(int rate) {
+ if (_opl)
+ MAME::OPLDestroy(_opl);
+
+ _opl = MAME::makeAdlibOPL(rate);
+ return (_opl != 0);
+}
+
+void OPL_MAME::reset() {
+ MAME::OPLResetChip(_opl);
+}
+
+void OPL_MAME::write(int a, int v) {
+ MAME::OPLWrite(_opl, a, v);
+}
+
+byte OPL_MAME::read(int a) {
+ return MAME::OPLRead(_opl, a);
+}
+
+void OPL_MAME::writeReg(int r, int v) {
+ MAME::OPLWriteReg(_opl, r, v);
+}
+
+void OPL_MAME::readBuffer(int16 *buffer, int length) {
+ MAME::YM3812UpdateOne(_opl, buffer, length);
+}
+
/* -------------------- preliminary define section --------------------- */
/* attack/decay rate time rate */
#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
@@ -978,7 +1014,7 @@ static void OPL_UnLockTable(void) {
/*******************************************************************************/
/* ---------- update one of chip ----------- */
-void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave) {
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length) {
int i;
int data;
int16 *buf = buffer;
@@ -1020,7 +1056,7 @@ void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave) {
/* limit check */
data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT);
/* store to sound buffer */
- buf[i << interleave] = data >> OPL_OUTSB;
+ buf[i] = data >> OPL_OUTSB;
}
OPL->amsCnt = amsCnt;
@@ -1189,3 +1225,7 @@ FM_OPL *makeAdlibOPL(int rate) {
OPLBuildTables(env_bits, eg_ent);
return OPLCreate(OPL_TYPE_YM3812, 3579545, rate);
}
+
+} // end of namespace MAME
+} // end of namespace OPL
+
diff --git a/sound/softsynth/opl/mame.h b/sound/softsynth/opl/mame.h
index 47f21c9956..a9835f3b97 100644
--- a/sound/softsynth/opl/mame.h
+++ b/sound/softsynth/opl/mame.h
@@ -26,12 +26,17 @@
*/
-#ifndef SOUND_FMOPL_H
-#define SOUND_FMOPL_H
+#ifndef SOUND_SOFTSYNTH_OPL_MAME_H
+#define SOUND_SOFTSYNTH_OPL_MAME_H
#include "common/scummsys.h"
#include "common/util.h"
+#include "sound/fmopl.h"
+
+namespace OPL {
+namespace MAME {
+
enum {
FMOPL_ENV_BITS_HQ = 16,
FMOPL_ENV_BITS_MQ = 8,
@@ -165,9 +170,32 @@ int OPLWrite(FM_OPL *OPL, int a, int v);
unsigned char OPLRead(FM_OPL *OPL, int a);
int OPLTimerOver(FM_OPL *OPL, int c);
void OPLWriteReg(FM_OPL *OPL, int r, int v);
-void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave = 0);
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length);
// Factory method
FM_OPL *makeAdlibOPL(int rate);
+// OPL API implementation
+class OPL_MAME : public OPL {
+private:
+ FM_OPL *_opl;
+public:
+ OPL_MAME() : _opl(0) {}
+ ~OPL_MAME();
+
+ bool init(int rate);
+ void reset();
+
+ void write(int a, int v);
+ byte read(int a);
+
+ void writeReg(int r, int v);
+
+ void readBuffer(int16 *buffer, int length);
+ bool isStereo() const { return false; }
+};
+
+} // end of namespace MAME
+} // end of namespace OPL
+
#endif
diff --git a/sound/softsynth/opl/opl.cpp b/sound/softsynth/opl/opl.cpp
new file mode 100644
index 0000000000..416f38a8ce
--- /dev/null
+++ b/sound/softsynth/opl/opl.cpp
@@ -0,0 +1,1445 @@
+/*
+ * Copyright (C) 2002-2009 The DOSBox Team
+ * OPL2/OPL3 emulation library
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+
+/*
+ * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman
+ * Copyright (C) 1998-2001 Ken Silverman
+ * Ken Silverman's official web site: "http://www.advsys.net/ken"
+ */
+
+#include "opl.h"
+
+
+static fltype recipsamp; // inverse of sampling rate
+static Bit16s wavtable[WAVEPREC*3]; // wave form table
+
+// vibrato/tremolo tables
+static Bit32s vib_table[VIBTAB_SIZE];
+static Bit32s trem_table[TREMTAB_SIZE*2];
+
+static Bit32s vibval_const[BLOCKBUF_SIZE];
+static Bit32s tremval_const[BLOCKBUF_SIZE];
+
+// vibrato value tables (used per-operator)
+static Bit32s vibval_var1[BLOCKBUF_SIZE];
+static Bit32s vibval_var2[BLOCKBUF_SIZE];
+
+// vibrato/trmolo value table pointers
+static Bit32s *vibval1, *vibval2, *vibval3, *vibval4;
+static Bit32s *tremval1, *tremval2, *tremval3, *tremval4;
+
+
+// key scale level lookup table
+static const fltype kslmul[4] = {
+ 0.0, 0.5, 0.25, 1.0 // -> 0, 3, 1.5, 6 dB/oct
+};
+
+// frequency multiplicator lookup table
+static const fltype frqmul_tab[16] = {
+ 0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15
+};
+// calculated frequency multiplication values (depend on sampling rate)
+static float frqmul[16];
+
+// key scale levels
+static Bit8u kslev[8][16];
+
+// map a channel number to the register offset of the modulator (=register base)
+static const Bit8u modulatorbase[9] = {
+ 0,1,2,
+ 8,9,10,
+ 16,17,18
+};
+
+// map a register base to a modulator operator number or operator number
+#if defined(OPLTYPE_IS_OPL3)
+static const Bit8u regbase2modop[44] = {
+ 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set
+ 18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set
+};
+static const Bit8u regbase2op[44] = {
+ 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set
+ 18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set
+};
+#else
+static const Bit8u regbase2modop[22] = {
+ 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8
+};
+static const Bit8u regbase2op[22] = {
+ 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17
+};
+#endif
+
+
+// start of the waveform
+static Bit32u waveform[8] = {
+ WAVEPREC,
+ WAVEPREC>>1,
+ WAVEPREC,
+ (WAVEPREC*3)>>2,
+ 0,
+ 0,
+ (WAVEPREC*5)>>2,
+ WAVEPREC<<1
+};
+
+// length of the waveform as mask
+static Bit32u wavemask[8] = {
+ WAVEPREC-1,
+ WAVEPREC-1,
+ (WAVEPREC>>1)-1,
+ (WAVEPREC>>1)-1,
+ WAVEPREC-1,
+ ((WAVEPREC*3)>>2)-1,
+ WAVEPREC>>1,
+ WAVEPREC-1
+};
+
+// where the first entry resides
+static Bit32u wavestart[8] = {
+ 0,
+ WAVEPREC>>1,
+ 0,
+ WAVEPREC>>2,
+ 0,
+ 0,
+ 0,
+ WAVEPREC>>3
+};
+
+// envelope generator function constants
+static fltype attackconst[4] = {1/2.82624,1/2.25280,1/1.88416,1/1.59744};
+static fltype decrelconst[4] = {1/39.28064,1/31.41608,1/26.17344,1/22.44608};
+
+
+void operator_advance(op_type* op_pt, Bit32s vib) {
+ op_pt->wfpos = op_pt->tcount; // waveform position
+
+ // advance waveform time
+ op_pt->tcount += op_pt->tinc;
+ op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT;
+
+ op_pt->generator_pos += generator_add;
+}
+
+void operator_advance_drums(op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3) {
+ Bit32u c1 = op_pt1->tcount/FIXEDPT;
+ Bit32u c3 = op_pt3->tcount/FIXEDPT;
+ Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00;
+
+ Bit32u noisebit = rand()&1;
+
+ Bit32u snare_phase_bit = (((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1);
+
+ //Hihat
+ Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1)));
+ op_pt1->wfpos = inttm*FIXEDPT; // waveform position
+ // advance waveform time
+ op_pt1->tcount += op_pt1->tinc;
+ op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT;
+ op_pt1->generator_pos += generator_add;
+
+ //Snare
+ inttm = ((1+snare_phase_bit) ^ noisebit)<<8;
+ op_pt2->wfpos = inttm*FIXEDPT; // waveform position
+ // advance waveform time
+ op_pt2->tcount += op_pt2->tinc;
+ op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT;
+ op_pt2->generator_pos += generator_add;
+
+ //Cymbal
+ inttm = (1+phasebit)<<8;
+ op_pt3->wfpos = inttm*FIXEDPT; // waveform position
+ // advance waveform time
+ op_pt3->tcount += op_pt3->tinc;
+ op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT;
+ op_pt3->generator_pos += generator_add;
+}
+
+
+// output level is sustained, mode changes only when operator is turned off (->release)
+// or when the keep-sustained bit is turned off (->sustain_nokeep)
+void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem) {
+ if (op_pt->op_state != OF_TYPE_OFF) {
+ op_pt->lastcval = op_pt->cval;
+ Bit32u i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT);
+
+ // wform: -16384 to 16383 (0x4000)
+ // trem : 32768 to 65535 (0x10000)
+ // step_amp: 0.0 to 1.0
+ // vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000)
+
+ op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0);
+ }
+}
+
+
+// no action, operator is off
+void operator_off(op_type* /*op_pt*/) {
+}
+
+// output level is sustained, mode changes only when operator is turned off (->release)
+// or when the keep-sustained bit is turned off (->sustain_nokeep)
+void operator_sustain(op_type* op_pt) {
+ Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
+ for (Bit32u ct=0; ct<num_steps_add; ct++) {
+ op_pt->cur_env_step++;
+ }
+ op_pt->generator_pos -= num_steps_add*FIXEDPT;
+}
+
+// operator in release mode, if output level reaches zero the operator is turned off
+void operator_release(op_type* op_pt) {
+ // ??? boundary?
+ if (op_pt->amp > 0.00000001) {
+ // release phase
+ op_pt->amp *= op_pt->releasemul;
+ }
+
+ Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
+ for (Bit32u ct=0; ct<num_steps_add; ct++) {
+ op_pt->cur_env_step++; // sample counter
+ if ((op_pt->cur_env_step & op_pt->env_step_r)==0) {
+ if (op_pt->amp <= 0.00000001) {
+ // release phase finished, turn off this operator
+ op_pt->amp = 0.0;
+ if (op_pt->op_state == OF_TYPE_REL) {
+ op_pt->op_state = OF_TYPE_OFF;
+ }
+ }
+ op_pt->step_amp = op_pt->amp;
+ }
+ }
+ op_pt->generator_pos -= num_steps_add*FIXEDPT;
+}
+
+// operator in decay mode, if sustain level is reached the output level is either
+// kept (sustain level keep enabled) or the operator is switched into release mode
+void operator_decay(op_type* op_pt) {
+ if (op_pt->amp > op_pt->sustain_level) {
+ // decay phase
+ op_pt->amp *= op_pt->decaymul;
+ }
+
+ Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
+ for (Bit32u ct=0; ct<num_steps_add; ct++) {
+ op_pt->cur_env_step++;
+ if ((op_pt->cur_env_step & op_pt->env_step_d)==0) {
+ if (op_pt->amp <= op_pt->sustain_level) {
+ // decay phase finished, sustain level reached
+ if (op_pt->sus_keep) {
+ // keep sustain level (until turned off)
+ op_pt->op_state = OF_TYPE_SUS;
+ op_pt->amp = op_pt->sustain_level;
+ } else {
+ // next: release phase
+ op_pt->op_state = OF_TYPE_SUS_NOKEEP;
+ }
+ }
+ op_pt->step_amp = op_pt->amp;
+ }
+ }
+ op_pt->generator_pos -= num_steps_add*FIXEDPT;
+}
+
+// operator in attack mode, if full output level is reached,
+// the operator is switched into decay mode
+void operator_attack(op_type* op_pt) {
+ op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0;
+
+ Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
+ for (Bit32u ct=0; ct<num_steps_add; ct++) {
+ op_pt->cur_env_step++; // next sample
+ if ((op_pt->cur_env_step & op_pt->env_step_a)==0) { // check if next step already reached
+ if (op_pt->amp > 1.0) {
+ // attack phase finished, next: decay
+ op_pt->op_state = OF_TYPE_DEC;
+ op_pt->amp = 1.0;
+ op_pt->step_amp = 1.0;
+ }
+ op_pt->step_skip_pos <<= 1;
+ if (op_pt->step_skip_pos==0) op_pt->step_skip_pos = 1;
+ if (op_pt->step_skip_pos & op_pt->env_step_skip_a) { // check if required to skip next step
+ op_pt->step_amp = op_pt->amp;
+ }
+ }
+ }
+ op_pt->generator_pos -= num_steps_add*FIXEDPT;
+}
+
+
+typedef void (*optype_fptr)(op_type*);
+
+optype_fptr opfuncs[6] = {
+ operator_attack,
+ operator_decay,
+ operator_release,
+ operator_sustain, // sustain phase (keeping level)
+ operator_release, // sustain_nokeep phase (release-style)
+ operator_off
+};
+
+void change_attackrate(Bitu regbase, op_type* op_pt) {
+ Bits attackrate = adlibreg[ARC_ATTR_DECR+regbase]>>4;
+ if (attackrate) {
+ fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*recipsamp);
+ // attack rate coefficients
+ op_pt->a0 = (fltype)(0.0377*f);
+ op_pt->a1 = (fltype)(10.73*f+1);
+ op_pt->a2 = (fltype)(-17.57*f);
+ op_pt->a3 = (fltype)(7.42*f);
+
+ Bits step_skip = attackrate*4 + op_pt->toff;
+ Bits steps = step_skip >> 2;
+ op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1;
+
+ Bits step_num = (step_skip<=48)?(4-(step_skip&3)):0;
+ static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa};
+ op_pt->env_step_skip_a = step_skip_mask[step_num];
+
+#if defined(OPLTYPE_IS_OPL3)
+ if (step_skip>=60) {
+#else
+ if (step_skip>=62) {
+#endif
+ op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0
+ op_pt->a1 = (fltype)(0.0);
+ op_pt->a2 = (fltype)(0.0);
+ op_pt->a3 = (fltype)(0.0);
+ }
+ } else {
+ // attack disabled
+ op_pt->a0 = 0.0;
+ op_pt->a1 = 1.0;
+ op_pt->a2 = 0.0;
+ op_pt->a3 = 0.0;
+ op_pt->env_step_a = 0;
+ op_pt->env_step_skip_a = 0;
+ }
+}
+
+void change_decayrate(Bitu regbase, op_type* op_pt) {
+ Bits decayrate = adlibreg[ARC_ATTR_DECR+regbase]&15;
+ // decaymul should be 1.0 when decayrate==0
+ if (decayrate) {
+ fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp);
+ op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2)))));
+ Bits steps = (decayrate*4 + op_pt->toff) >> 2;
+ op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1;
+ } else {
+ op_pt->decaymul = 1.0;
+ op_pt->env_step_d = 0;
+ }
+}
+
+void change_releaserate(Bitu regbase, op_type* op_pt) {
+ Bits releaserate = adlibreg[ARC_SUSL_RELR+regbase]&15;
+ // releasemul should be 1.0 when releaserate==0
+ if (releaserate) {
+ fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp);
+ op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2)))));
+ Bits steps = (releaserate*4 + op_pt->toff) >> 2;
+ op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1;
+ } else {
+ op_pt->releasemul = 1.0;
+ op_pt->env_step_r = 0;
+ }
+}
+
+void change_sustainlevel(Bitu regbase, op_type* op_pt) {
+ Bits sustainlevel = adlibreg[ARC_SUSL_RELR+regbase]>>4;
+ // sustainlevel should be 0.0 when sustainlevel==15 (max)
+ if (sustainlevel<15) {
+ op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05)));
+ } else {
+ op_pt->sustain_level = 0.0;
+ }
+}
+
+void change_waveform(Bitu regbase, op_type* op_pt) {
+#if defined(OPLTYPE_IS_OPL3)
+ if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22
+#endif
+ // waveform selection
+ op_pt->cur_wmask = wavemask[wave_sel[regbase]];
+ op_pt->cur_wform = &wavtable[waveform[wave_sel[regbase]]];
+ // (might need to be adapted to waveform type here...)
+}
+
+void change_keepsustain(Bitu regbase, op_type* op_pt) {
+ op_pt->sus_keep = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0;
+ if (op_pt->op_state==OF_TYPE_SUS) {
+ if (!op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS_NOKEEP;
+ } else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP) {
+ if (op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS;
+ }
+}
+
+// enable/disable vibrato/tremolo LFO effects
+void change_vibrato(Bitu regbase, op_type* op_pt) {
+ op_pt->vibrato = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0;
+ op_pt->tremolo = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0;
+}
+
+// change amount of self-feedback
+void change_feedback(Bitu chanbase, op_type* op_pt) {
+ Bits feedback = adlibreg[ARC_FEEDBACK+chanbase]&14;
+ if (feedback) op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8)));
+ else op_pt->mfbi = 0;
+}
+
+void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt) {
+ // frequency
+ Bit32u frn = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)adlibreg[ARC_FREQ_NUM+chanbase];
+ // block number/octave
+ Bit32u oct = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])>>2)&7);
+ op_pt->freq_high = (Bit32s)((frn>>7)&7);
+
+ // keysplit
+ Bit32u note_sel = (adlibreg[8]>>6)&1;
+ op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)&note_sel);
+ op_pt->toff += (oct<<1);
+
+ // envelope scaling (KSR)
+ if (!(adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2;
+
+ // 20+a0+b0:
+ op_pt->tinc = (Bit32u)((((fltype)(frn<<oct))*frqmul[adlibreg[ARC_TVS_KSR_MUL+regbase]&15]));
+ // 40+a0+b0:
+ fltype vol_in = (fltype)((fltype)(adlibreg[ARC_KSL_OUTLEV+regbase]&63) +
+ kslmul[adlibreg[ARC_KSL_OUTLEV+regbase]>>6]*kslev[oct][frn>>6]);
+ op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14)));
+
+ // operator frequency changed, care about features that depend on it
+ change_attackrate(regbase,op_pt);
+ change_decayrate(regbase,op_pt);
+ change_releaserate(regbase,op_pt);
+}
+
+void enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type) {
+ // check if this is really an off-on transition
+ if (op_pt->act_state == OP_ACT_OFF) {
+ Bits wselbase = regbase;
+ if (wselbase>=ARC_SECONDSET) wselbase -= (ARC_SECONDSET-22); // second set starts at 22
+
+ op_pt->tcount = wavestart[wave_sel[wselbase]]*FIXEDPT;
+
+ // start with attack mode
+ op_pt->op_state = OF_TYPE_ATT;
+ op_pt->act_state |= act_type;
+ }
+}
+
+void disable_operator(op_type* op_pt, Bit32u act_type) {
+ // check if this is really an on-off transition
+ if (op_pt->act_state != OP_ACT_OFF) {
+ op_pt->act_state &= (~act_type);
+ if (op_pt->act_state == OP_ACT_OFF) {
+ if (op_pt->op_state != OF_TYPE_OFF) op_pt->op_state = OF_TYPE_REL;
+ }
+ }
+}
+
+void adlib_init(Bit32u samplerate) {
+ Bits i, j, oct;
+
+ int_samplerate = samplerate;
+
+ generator_add = (Bit32u)(INTFREQU*FIXEDPT/int_samplerate);
+
+
+ memset((void *)adlibreg,0,sizeof(adlibreg));
+ memset((void *)op,0,sizeof(op_type)*MAXOPERATORS);
+ memset((void *)wave_sel,0,sizeof(wave_sel));
+
+ for (i=0;i<MAXOPERATORS;i++) {
+ op[i].op_state = OF_TYPE_OFF;
+ op[i].act_state = OP_ACT_OFF;
+ op[i].amp = 0.0;
+ op[i].step_amp = 0.0;
+ op[i].vol = 0.0;
+ op[i].tcount = 0;
+ op[i].tinc = 0;
+ op[i].toff = 0;
+ op[i].cur_wmask = wavemask[0];
+ op[i].cur_wform = &wavtable[waveform[0]];
+ op[i].freq_high = 0;
+
+ op[i].generator_pos = 0;
+ op[i].cur_env_step = 0;
+ op[i].env_step_a = 0;
+ op[i].env_step_d = 0;
+ op[i].env_step_r = 0;
+ op[i].step_skip_pos = 0;
+ op[i].env_step_skip_a = 0;
+
+#if defined(OPLTYPE_IS_OPL3)
+ op[i].is_4op = false;
+ op[i].is_4op_attached = false;
+ op[i].left_pan = 1;
+ op[i].right_pan = 1;
+#endif
+ }
+
+ recipsamp = 1.0 / (fltype)int_samplerate;
+ for (i=15;i>=0;i--) {
+ frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*recipsamp);
+ }
+
+ status = 0;
+ index = 0;
+
+
+ // create vibrato table
+ vib_table[0] = 8;
+ vib_table[1] = 4;
+ vib_table[2] = 0;
+ vib_table[3] = -4;
+ for (i=4; i<VIBTAB_SIZE; i++) vib_table[i] = vib_table[i-4]*-1;
+
+ // vibrato at ~6.1 ?? (opl3 docs say 6.1, opl4 docs say 6.0, y8950 docs say 6.4)
+ vibtab_add = static_cast<Bit32u>(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/int_samplerate);
+ vibtab_pos = 0;
+
+ for (i=0; i<BLOCKBUF_SIZE; i++) vibval_const[i] = 0;
+
+
+ // create tremolo table
+ Bit32s trem_table_int[TREMTAB_SIZE];
+ for (i=0; i<14; i++) trem_table_int[i] = i-13; // upwards (13 to 26 -> -0.5/6 to 0)
+ for (i=14; i<41; i++) trem_table_int[i] = -i+14; // downwards (26 to 0 -> 0 to -1/6)
+ for (i=41; i<53; i++) trem_table_int[i] = i-40-26; // upwards (1 to 12 -> -1/6 to -0.5/6)
+
+ for (i=0; i<TREMTAB_SIZE; i++) {
+ // 0.0 .. -26/26*4.8/6 == [0.0 .. -0.8], 4/53 steps == [1 .. 0.57]
+ fltype trem_val1=(fltype)(((fltype)trem_table_int[i])*4.8/26.0/6.0); // 4.8db
+ fltype trem_val2=(fltype)((fltype)((Bit32s)(trem_table_int[i]/4))*1.2/6.0/6.0); // 1.2db (larger stepping)
+
+ trem_table[i] = (Bit32s)(pow(FL2,trem_val1)*FIXEDPT);
+ trem_table[TREMTAB_SIZE+i] = (Bit32s)(pow(FL2,trem_val2)*FIXEDPT);
+ }
+
+ // tremolo at 3.7hz
+ tremtab_add = (Bit32u)((fltype)TREMTAB_SIZE * TREM_FREQ * FIXEDPT_LFO / (fltype)int_samplerate);
+ tremtab_pos = 0;
+
+ for (i=0; i<BLOCKBUF_SIZE; i++) tremval_const[i] = FIXEDPT;
+
+
+ static Bitu initfirstime = 0;
+ if (!initfirstime) {
+ initfirstime = 1;
+
+ // create waveform tables
+ for (i=0;i<(WAVEPREC>>1);i++) {
+ wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC));
+ wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC));
+ wavtable[i] = wavtable[(i<<1) +WAVEPREC];
+ // table to be verified, alternative: (zero-less)
+/* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1)-1)*PI/WAVEPREC));
+ wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1) )*PI/WAVEPREC));
+ wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */
+ }
+ for (i=0;i<(WAVEPREC>>3);i++) {
+ wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384;
+ wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384;
+ }
+
+ // key scale level table verified ([table in book]*8/3)
+ kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37;
+ kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47;
+ kslev[7][8] = 48;
+ for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41);
+ for (j=6;j>=0;j--) {
+ for (i=0;i<16;i++) {
+ oct = (Bits)kslev[j+1][i]-8;
+ if (oct < 0) oct = 0;
+ kslev[j][i] = (Bit8u)oct;
+ }
+ }
+ }
+
+}
+
+
+
+void adlib_write(Bitu idx, Bit8u val) {
+ Bit32u second_set = idx&0x100;
+ adlibreg[idx] = val;
+
+ switch (idx&0xf0) {
+ case ARC_CONTROL:
+ // here we check for the second set registers, too:
+ switch (idx) {
+ case 0x02: // timer1 counter
+ case 0x03: // timer2 counter
+ break;
+ case 0x04:
+ // IRQ reset, timer mask/start
+ if (val&0x80) {
+ // clear IRQ bits in status register
+ status &= ~0x60;
+ } else {
+ status = 0;
+ }
+ break;
+#if defined(OPLTYPE_IS_OPL3)
+ case 0x04|ARC_SECONDSET:
+ // 4op enable/disable switches for each possible channel
+ op[0].is_4op = (val&1)>0;
+ op[3].is_4op_attached = op[0].is_4op;
+ op[1].is_4op = (val&2)>0;
+ op[4].is_4op_attached = op[1].is_4op;
+ op[2].is_4op = (val&4)>0;
+ op[5].is_4op_attached = op[2].is_4op;
+ op[18].is_4op = (val&8)>0;
+ op[21].is_4op_attached = op[18].is_4op;
+ op[19].is_4op = (val&16)>0;
+ op[22].is_4op_attached = op[19].is_4op;
+ op[20].is_4op = (val&32)>0;
+ op[23].is_4op_attached = op[20].is_4op;
+ break;
+ case 0x05|ARC_SECONDSET:
+ break;
+#endif
+ case 0x08:
+ // CSW, note select
+ break;
+ default:
+ break;
+ }
+ break;
+ case ARC_TVS_KSR_MUL:
+ case ARC_TVS_KSR_MUL+0x10: {
+ // tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication
+ int num = idx&7;
+ Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff;
+ if ((num<6) && (base<22)) {
+ Bitu modop = regbase2modop[second_set?(base+22):base];
+ Bitu regbase = base+second_set;
+ Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop;
+
+ // change tremolo/vibrato and sustain keeping of this operator
+ op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)];
+ change_keepsustain(regbase,op_ptr);
+ change_vibrato(regbase,op_ptr);
+
+ // change frequency calculations of this operator as
+ // key scale rate and frequency multiplicator can be changed
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) {
+ // operator uses frequency of channel
+ change_frequency(chanbase-3,regbase,op_ptr);
+ } else {
+ change_frequency(chanbase,regbase,op_ptr);
+ }
+#else
+ change_frequency(chanbase,base,op_ptr);
+#endif
+ }
+ }
+ break;
+ case ARC_KSL_OUTLEV:
+ case ARC_KSL_OUTLEV+0x10: {
+ // key scale level; output rate
+ int num = idx&7;
+ Bitu base = (idx-ARC_KSL_OUTLEV)&0xff;
+ if ((num<6) && (base<22)) {
+ Bitu modop = regbase2modop[second_set?(base+22):base];
+ Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop;
+
+ // change frequency calculations of this operator as
+ // key scale level and output rate can be changed
+ op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)];
+#if defined(OPLTYPE_IS_OPL3)
+ Bitu regbase = base+second_set;
+ if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) {
+ // operator uses frequency of channel
+ change_frequency(chanbase-3,regbase,op_ptr);
+ } else {
+ change_frequency(chanbase,regbase,op_ptr);
+ }
+#else
+ change_frequency(chanbase,base,op_ptr);
+#endif
+ }
+ }
+ break;
+ case ARC_ATTR_DECR:
+ case ARC_ATTR_DECR+0x10: {
+ // attack/decay rates
+ int num = idx&7;
+ Bitu base = (idx-ARC_ATTR_DECR)&0xff;
+ if ((num<6) && (base<22)) {
+ Bitu regbase = base+second_set;
+
+ // change attack rate and decay rate of this operator
+ op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]];
+ change_attackrate(regbase,op_ptr);
+ change_decayrate(regbase,op_ptr);
+ }
+ }
+ break;
+ case ARC_SUSL_RELR:
+ case ARC_SUSL_RELR+0x10: {
+ // sustain level; release rate
+ int num = idx&7;
+ Bitu base = (idx-ARC_SUSL_RELR)&0xff;
+ if ((num<6) && (base<22)) {
+ Bitu regbase = base+second_set;
+
+ // change sustain level and release rate of this operator
+ op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]];
+ change_releaserate(regbase,op_ptr);
+ change_sustainlevel(regbase,op_ptr);
+ }
+ }
+ break;
+ case ARC_FREQ_NUM: {
+ // 0xa0-0xa8 low8 frequency
+ Bitu base = (idx-ARC_FREQ_NUM)&0xff;
+ if (base<9) {
+ Bits opbase = second_set?(base+18):base;
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break;
+#endif
+ // regbase of modulator:
+ Bits modbase = modulatorbase[base]+second_set;
+
+ Bitu chanbase = base+second_set;
+
+ change_frequency(chanbase,modbase,&op[opbase]);
+ change_frequency(chanbase,modbase+3,&op[opbase+9]);
+#if defined(OPLTYPE_IS_OPL3)
+ // for 4op channels all four operators are modified to the frequency of the channel
+ if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) {
+ change_frequency(chanbase,modbase+8,&op[opbase+3]);
+ change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]);
+ }
+#endif
+ }
+ }
+ break;
+ case ARC_KON_BNUM: {
+ if (idx == ARC_PERC_MODE) {
+#if defined(OPLTYPE_IS_OPL3)
+ if (second_set) return;
+#endif
+
+ if ((val&0x30) == 0x30) { // BassDrum active
+ enable_operator(16,&op[6],OP_ACT_PERC);
+ change_frequency(6,16,&op[6]);
+ enable_operator(16+3,&op[6+9],OP_ACT_PERC);
+ change_frequency(6,16+3,&op[6+9]);
+ } else {
+ disable_operator(&op[6],OP_ACT_PERC);
+ disable_operator(&op[6+9],OP_ACT_PERC);
+ }
+ if ((val&0x28) == 0x28) { // Snare active
+ enable_operator(17+3,&op[16],OP_ACT_PERC);
+ change_frequency(7,17+3,&op[16]);
+ } else {
+ disable_operator(&op[16],OP_ACT_PERC);
+ }
+ if ((val&0x24) == 0x24) { // TomTom active
+ enable_operator(18,&op[8],OP_ACT_PERC);
+ change_frequency(8,18,&op[8]);
+ } else {
+ disable_operator(&op[8],OP_ACT_PERC);
+ }
+ if ((val&0x22) == 0x22) { // Cymbal active
+ enable_operator(18+3,&op[8+9],OP_ACT_PERC);
+ change_frequency(8,18+3,&op[8+9]);
+ } else {
+ disable_operator(&op[8+9],OP_ACT_PERC);
+ }
+ if ((val&0x21) == 0x21) { // Hihat active
+ enable_operator(17,&op[7],OP_ACT_PERC);
+ change_frequency(7,17,&op[7]);
+ } else {
+ disable_operator(&op[7],OP_ACT_PERC);
+ }
+
+ break;
+ }
+ // regular 0xb0-0xb8
+ Bitu base = (idx-ARC_KON_BNUM)&0xff;
+ if (base<9) {
+ Bits opbase = second_set?(base+18):base;
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break;
+#endif
+ // regbase of modulator:
+ Bits modbase = modulatorbase[base]+second_set;
+
+ if (val&32) {
+ // operator switched on
+ enable_operator(modbase,&op[opbase],OP_ACT_NORMAL); // modulator (if 2op)
+ enable_operator(modbase+3,&op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op)
+#if defined(OPLTYPE_IS_OPL3)
+ // for 4op channels all four operators are switched on
+ if ((adlibreg[0x105]&1) && op[opbase].is_4op) {
+ // turn on chan+3 operators as well
+ enable_operator(modbase+8,&op[opbase+3],OP_ACT_NORMAL);
+ enable_operator(modbase+3+8,&op[opbase+3+9],OP_ACT_NORMAL);
+ }
+#endif
+ } else {
+ // operator switched off
+ disable_operator(&op[opbase],OP_ACT_NORMAL);
+ disable_operator(&op[opbase+9],OP_ACT_NORMAL);
+#if defined(OPLTYPE_IS_OPL3)
+ // for 4op channels all four operators are switched off
+ if ((adlibreg[0x105]&1) && op[opbase].is_4op) {
+ // turn off chan+3 operators as well
+ disable_operator(&op[opbase+3],OP_ACT_NORMAL);
+ disable_operator(&op[opbase+3+9],OP_ACT_NORMAL);
+ }
+#endif
+ }
+
+ Bitu chanbase = base+second_set;
+
+ // change frequency calculations of modulator and carrier (2op) as
+ // the frequency of the channel has changed
+ change_frequency(chanbase,modbase,&op[opbase]);
+ change_frequency(chanbase,modbase+3,&op[opbase+9]);
+#if defined(OPLTYPE_IS_OPL3)
+ // for 4op channels all four operators are modified to the frequency of the channel
+ if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) {
+ // change frequency calculations of chan+3 operators as well
+ change_frequency(chanbase,modbase+8,&op[opbase+3]);
+ change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]);
+ }
+#endif
+ }
+ }
+ break;
+ case ARC_FEEDBACK: {
+ // 0xc0-0xc8 feedback/modulation type (AM/FM)
+ Bitu base = (idx-ARC_FEEDBACK)&0xff;
+ if (base<9) {
+ Bits opbase = second_set?(base+18):base;
+ Bitu chanbase = base+second_set;
+ change_feedback(chanbase,&op[opbase]);
+#if defined(OPLTYPE_IS_OPL3)
+ // OPL3 panning
+ op[opbase].left_pan = ((val&0x10)>>4);
+ op[opbase].right_pan = ((val&0x20)>>5);
+#endif
+ }
+ }
+ break;
+ case ARC_WAVE_SEL:
+ case ARC_WAVE_SEL+0x10: {
+ int num = idx&7;
+ Bitu base = (idx-ARC_WAVE_SEL)&0xff;
+ if ((num<6) && (base<22)) {
+#if defined(OPLTYPE_IS_OPL3)
+ Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[]
+ // change waveform
+ if (adlibreg[0x105]&1) wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible
+ else wave_sel[wselbase] = val&3;
+ op_type* op_ptr = &op[regbase2modop[wselbase]+((num<3) ? 0 : 9)];
+ change_waveform(wselbase,op_ptr);
+#else
+ if (adlibreg[0x01]&0x20) {
+ // wave selection enabled, change waveform
+ wave_sel[base] = val&3;
+ op_type* op_ptr = &op[regbase2modop[base]+((num<3) ? 0 : 9)];
+ change_waveform(base,op_ptr);
+ }
+#endif
+ }
+ }
+ break;
+ default:
+ break;
+ }
+}
+
+
+Bitu adlib_reg_read(Bitu port) {
+#if defined(OPLTYPE_IS_OPL3)
+ // opl3-detection routines require ret&6 to be zero
+ if ((port&1)==0) {
+ return status;
+ }
+ return 0x00;
+#else
+ // opl2-detection routines require ret&6 to be 6
+ if ((port&1)==0) {
+ return status|6;
+ }
+ return 0xff;
+#endif
+}
+
+void adlib_write_index(Bitu port, Bit8u val) {
+ index = val;
+#if defined(OPLTYPE_IS_OPL3)
+ if ((port&3)!=0) {
+ // possibly second set
+ if (((adlibreg[0x105]&1)!=0) || (index==5)) index |= ARC_SECONDSET;
+ }
+#endif
+}
+
+static inline void clipit16(Bit32s ival, Bit16s* outval) {
+ if (ival<32768) {
+ if (ival>-32769) {
+ *outval=(Bit16s)ival;
+ } else {
+ *outval = -32768;
+ }
+ } else {
+ *outval = 32767;
+ }
+}
+
+
+
+// be careful with this
+// uses cptr and chanval, outputs into outbufl(/outbufr)
+// for opl3 check if opl3-mode is enabled (which uses stereo panning)
+#undef CHANVAL_OUT
+#if defined(OPLTYPE_IS_OPL3)
+#define CHANVAL_OUT \
+ if (adlibreg[0x105]&1) { \
+ outbufl[i] += chanval*cptr[0].left_pan; \
+ outbufr[i] += chanval*cptr[0].right_pan; \
+ } else { \
+ outbufl[i] += chanval; \
+ }
+#else
+#define CHANVAL_OUT \
+ outbufl[i] += chanval;
+#endif
+
+void adlib_getsample(Bit16s* sndptr, Bits numsamples) {
+ Bits i, endsamples;
+ op_type* cptr;
+
+ Bit32s outbufl[BLOCKBUF_SIZE];
+#if defined(OPLTYPE_IS_OPL3)
+ // second output buffer (right channel for opl3 stereo)
+ Bit32s outbufr[BLOCKBUF_SIZE];
+#endif
+
+ // vibrato/tremolo lookup tables (global, to possibly be used by all operators)
+ Bit32s vib_lut[BLOCKBUF_SIZE];
+ Bit32s trem_lut[BLOCKBUF_SIZE];
+
+ Bits samples_to_process = numsamples;
+
+ for (Bits cursmp=0; cursmp<samples_to_process; cursmp+=endsamples) {
+ endsamples = samples_to_process-cursmp;
+ if (endsamples>BLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE;
+
+ memset((void*)&outbufl,0,endsamples*sizeof(Bit32s));
+#if defined(OPLTYPE_IS_OPL3)
+ // clear second output buffer (opl3 stereo)
+ if (adlibreg[0x105]&1) memset((void*)&outbufr,0,endsamples*sizeof(Bit32s));
+#endif
+
+ // calculate vibrato/tremolo lookup tables
+ Bit32s vib_tshift = ((adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching
+ for (i=0;i<endsamples;i++) {
+ // cycle through vibrato table
+ vibtab_pos += vibtab_add;
+ if (vibtab_pos/FIXEDPT_LFO>=VIBTAB_SIZE) vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO;
+ vib_lut[i] = vib_table[vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents
+
+ // cycle through tremolo table
+ tremtab_pos += tremtab_add;
+ if (tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE) tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO;
+ if (adlibreg[ARC_PERC_MODE]&0x80) trem_lut[i] = trem_table[tremtab_pos/FIXEDPT_LFO];
+ else trem_lut[i] = trem_table[TREMTAB_SIZE+tremtab_pos/FIXEDPT_LFO];
+ }
+
+ if (adlibreg[ARC_PERC_MODE]&0x20) {
+ //BassDrum
+ cptr = &op[6];
+ if (adlibreg[ARC_FEEDBACK+6]&1) {
+ // additive synthesis
+ if (cptr[9].op_state != OF_TYPE_OFF) {
+ if (cptr[9].vibrato) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[9],vibval1[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],0,tremval1[i]);
+
+ Bit32s chanval = cptr[9].cval*2;
+ CHANVAL_OUT
+ }
+ }
+ } else {
+ // frequency modulation
+ if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[0].op_state != OF_TYPE_OFF)) {
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[9].cval*2;
+ CHANVAL_OUT
+ }
+ }
+ }
+
+ //TomTom (j=8)
+ if (op[8].op_state != OF_TYPE_OFF) {
+ cptr = &op[8];
+ if (cptr[0].vibrato) {
+ vibval3 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval3[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval3 = vibval_const;
+
+ if (cptr[0].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
+ else tremval3 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval3[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]); //TomTom
+ operator_output(&cptr[0],0,tremval3[i]);
+ Bit32s chanval = cptr[0].cval*2;
+ CHANVAL_OUT
+ }
+ }
+
+ //Snare/Hihat (j=7), Cymbal (j=8)
+ if ((op[7].op_state != OF_TYPE_OFF) || (op[16].op_state != OF_TYPE_OFF) ||
+ (op[17].op_state != OF_TYPE_OFF)) {
+ cptr = &op[7];
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ cptr = &op[8];
+ if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) {
+ vibval4 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval4[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval4 = vibval_const;
+
+ if (cptr[9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table
+ else tremval4 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance_drums(&op[7],vibval1[i],&op[7+9],vibval2[i],&op[8+9],vibval4[i]);
+
+ opfuncs[op[7].op_state](&op[7]); //Hihat
+ operator_output(&op[7],0,tremval1[i]);
+
+ opfuncs[op[7+9].op_state](&op[7+9]); //Snare
+ operator_output(&op[7+9],0,tremval2[i]);
+
+ opfuncs[op[8+9].op_state](&op[8+9]); //Cymbal
+ operator_output(&op[8+9],0,tremval4[i]);
+
+ Bit32s chanval = (op[7].cval + op[7+9].cval + op[8+9].cval)*2;
+ CHANVAL_OUT
+ }
+ }
+ }
+
+ Bitu max_channel = NUM_CHANNELS;
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1)==0) max_channel = NUM_CHANNELS/2;
+#endif
+ for (Bits cur_ch=max_channel-1; cur_ch>=0; cur_ch--) {
+ // skip drum/percussion operators
+ if ((adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue;
+
+ Bitu k = cur_ch;
+#if defined(OPLTYPE_IS_OPL3)
+ if (cur_ch < 9) {
+ cptr = &op[cur_ch];
+ } else {
+ cptr = &op[cur_ch+9]; // second set is operator18-operator35
+ k += (-9+256); // second set uses registers 0x100 onwards
+ }
+ // check if this operator is part of a 4-op
+ if ((adlibreg[0x105]&1) && cptr->is_4op_attached) continue;
+#else
+ cptr = &op[cur_ch];
+#endif
+
+ // check for FM/AM
+ if (adlibreg[ARC_FEEDBACK+k]&1) {
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && cptr->is_4op) {
+ if (adlibreg[ARC_FEEDBACK+k+3]&1) {
+ // AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4)
+ if (cptr[0].op_state != OF_TYPE_OFF) {
+ if (cptr[0].vibrato) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ Bit32s chanval = cptr[0].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) {
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[9],vibval1[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],0,tremval1[i]);
+
+ operator_advance(&cptr[3],0);
+ opfuncs[cptr[3].op_state](&cptr[3]);
+ operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[3].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ if (cptr[3+9].op_state != OF_TYPE_OFF) {
+ if (cptr[3+9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[3+9],0);
+ opfuncs[cptr[3+9].op_state](&cptr[3+9]);
+ operator_output(&cptr[3+9],0,tremval1[i]);
+
+ Bit32s chanval = cptr[3+9].cval;
+ CHANVAL_OUT
+ }
+ }
+ } else {
+ // AM-FM-style synthesis (op1[fb] + (op2 * op3 * op4))
+ if (cptr[0].op_state != OF_TYPE_OFF) {
+ if (cptr[0].vibrato) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ Bit32s chanval = cptr[0].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+ if (cptr[3+9].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
+ else tremval3 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[9],vibval1[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],0,tremval1[i]);
+
+ operator_advance(&cptr[3],0);
+ opfuncs[cptr[3].op_state](&cptr[3]);
+ operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]);
+
+ operator_advance(&cptr[3+9],0);
+ opfuncs[cptr[3+9].op_state](&cptr[3+9]);
+ operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval3[i]);
+
+ Bit32s chanval = cptr[3+9].cval;
+ CHANVAL_OUT
+ }
+ }
+ }
+ continue;
+ }
+#endif
+ // 2op additive synthesis
+ if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue;
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ // carrier1
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ // carrier2
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],0,tremval2[i]);
+
+ Bit32s chanval = cptr[9].cval + cptr[0].cval;
+ CHANVAL_OUT
+ }
+ } else {
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && cptr->is_4op) {
+ if (adlibreg[ARC_FEEDBACK+k+3]&1) {
+ // FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4))
+ if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) {
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[9].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
+ if (cptr[3].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[3+9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[3],0);
+ opfuncs[cptr[3].op_state](&cptr[3]);
+ operator_output(&cptr[3],0,tremval1[i]);
+
+ operator_advance(&cptr[3+9],0);
+ opfuncs[cptr[3+9].op_state](&cptr[3+9]);
+ operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[3+9].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ } else {
+ // FM-FM-style synthesis (op1[fb] * op2 * op3 * op4)
+ if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF) ||
+ (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+ if (cptr[3].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
+ else tremval3 = tremval_const;
+ if (cptr[3+9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table
+ else tremval4 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
+
+ operator_advance(&cptr[3],0);
+ opfuncs[cptr[3].op_state](&cptr[3]);
+ operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval3[i]);
+
+ operator_advance(&cptr[3+9],0);
+ opfuncs[cptr[3+9].op_state](&cptr[3+9]);
+ operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval4[i]);
+
+ Bit32s chanval = cptr[3+9].cval;
+ CHANVAL_OUT
+ }
+ }
+ }
+ continue;
+ }
+#endif
+ // 2op frequency modulation
+ if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue;
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ // modulator
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ // carrier
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[9].cval;
+ CHANVAL_OUT
+ }
+ }
+ }
+
+#if defined(OPLTYPE_IS_OPL3)
+ if (adlibreg[0x105]&1) {
+ // convert to 16bit samples (stereo)
+ for (i=0;i<endsamples;i++) {
+ clipit16(outbufl[i],sndptr++);
+ clipit16(outbufr[i],sndptr++);
+ }
+ } else {
+ // convert to 16bit samples (mono)
+ for (i=0;i<endsamples;i++) {
+ clipit16(outbufl[i],sndptr++);
+ clipit16(outbufl[i],sndptr++);
+ }
+ }
+#else
+ // convert to 16bit samples
+ for (i=0;i<endsamples;i++)
+ clipit16(outbufl[i],sndptr++);
+#endif
+
+ }
+}
diff --git a/sound/softsynth/opl/opl.h b/sound/softsynth/opl/opl.h
new file mode 100644
index 0000000000..4a04f9a0b7
--- /dev/null
+++ b/sound/softsynth/opl/opl.h
@@ -0,0 +1,197 @@
+/*
+ * Copyright (C) 2002-2009 The DOSBox Team
+ * OPL2/OPL3 emulation library
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+
+/*
+ * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman
+ * Copyright (C) 1998-2001 Ken Silverman
+ * Ken Silverman's official web site: "http://www.advsys.net/ken"
+ */
+
+
+#define fltype double
+
+/*
+ define Bits, Bitu, Bit32s, Bit32u, Bit16s, Bit16u, Bit8s, Bit8u here
+*/
+
+typedef uint Bitu;
+typedef int Bits;
+typedef uint32 Bit32u;
+typedef int32 Bit32s;
+typedef uint16 Bit16u;
+typedef int16 Bit16s;
+typedef uint8 Bit8u;
+typedef int8 Bit8s;
+
+#undef NUM_CHANNELS
+#if defined(OPLTYPE_IS_OPL3)
+#define NUM_CHANNELS 18
+#else
+#define NUM_CHANNELS 9
+#endif
+
+#define MAXOPERATORS (NUM_CHANNELS*2)
+
+
+#define FL05 ((fltype)0.5)
+#define FL2 ((fltype)2.0)
+
+#ifdef PI
+#undef PI
+#endif
+
+#define PI ((fltype)3.1415926535897932384626433832795)
+
+
+#define FIXEDPT 0x10000 // fixed-point calculations using 16+16
+#define FIXEDPT_LFO 0x1000000 // fixed-point calculations using 8+24
+
+#define WAVEPREC 1024 // waveform precision (10 bits)
+
+#define INTFREQU ((fltype)(14318180.0 / 288.0)) // clocking of the chip
+
+
+#define OF_TYPE_ATT 0
+#define OF_TYPE_DEC 1
+#define OF_TYPE_REL 2
+#define OF_TYPE_SUS 3
+#define OF_TYPE_SUS_NOKEEP 4
+#define OF_TYPE_OFF 5
+
+#define ARC_CONTROL 0x00
+#define ARC_TVS_KSR_MUL 0x20
+#define ARC_KSL_OUTLEV 0x40
+#define ARC_ATTR_DECR 0x60
+#define ARC_SUSL_RELR 0x80
+#define ARC_FREQ_NUM 0xa0
+#define ARC_KON_BNUM 0xb0
+#define ARC_PERC_MODE 0xbd
+#define ARC_FEEDBACK 0xc0
+#define ARC_WAVE_SEL 0xe0
+
+#define ARC_SECONDSET 0x100 // second operator set for OPL3
+
+
+#define OP_ACT_OFF 0x00
+#define OP_ACT_NORMAL 0x01 // regular channel activated (bitmasked)
+#define OP_ACT_PERC 0x02 // percussion channel activated (bitmasked)
+
+#define BLOCKBUF_SIZE 512
+
+
+// vibrato constants
+#define VIBTAB_SIZE 8
+#define VIBFAC 70/50000 // no braces, integer mul/div
+
+// tremolo constants and table
+#define TREMTAB_SIZE 53
+#define TREM_FREQ ((fltype)(3.7)) // tremolo at 3.7hz
+
+
+/* operator struct definition
+ For OPL2 all 9 channels consist of two operators each, carrier and modulator.
+ Channel x has operators x as modulator and operators (9+x) as carrier.
+ For OPL3 all 18 channels consist either of two operators (2op mode) or four
+ operators (4op mode) which is determined through register4 of the second
+ adlib register set.
+ Only the channels 0,1,2 (first set) and 9,10,11 (second set) can act as
+ 4op channels. The two additional operators for a channel y come from the
+ 2op channel y+3 so the operatorss y, (9+y), y+3, (9+y)+3 make up a 4op
+ channel.
+*/
+typedef struct operator_struct {
+ Bit32s cval, lastcval; // current output/last output (used for feedback)
+ Bit32u tcount, wfpos, tinc; // time (position in waveform) and time increment
+ fltype amp, step_amp; // and amplification (envelope)
+ fltype vol; // volume
+ fltype sustain_level; // sustain level
+ Bit32s mfbi; // feedback amount
+ fltype a0, a1, a2, a3; // attack rate function coefficients
+ fltype decaymul, releasemul; // decay/release rate functions
+ Bit32u op_state; // current state of operator (attack/decay/sustain/release/off)
+ Bit32u toff;
+ Bit32s freq_high; // highest three bits of the frequency, used for vibrato calculations
+ Bit16s* cur_wform; // start of selected waveform
+ Bit32u cur_wmask; // mask for selected waveform
+ Bit32u act_state; // activity state (regular, percussion)
+ bool sus_keep; // keep sustain level when decay finished
+ bool vibrato,tremolo; // vibrato/tremolo enable bits
+
+ // variables used to provide non-continuous envelopes
+ Bit32u generator_pos; // for non-standard sample rates we need to determine how many samples have passed
+ Bits cur_env_step; // current (standardized) sample position
+ Bits env_step_a,env_step_d,env_step_r; // number of std samples of one step (for attack/decay/release mode)
+ Bit8u step_skip_pos; // position of 8-cyclic step skipping (always 2^x to check against mask)
+ Bits env_step_skip_a; // bitmask that determines if a step is skipped (respective bit is zero then)
+
+#if defined(OPLTYPE_IS_OPL3)
+ bool is_4op,is_4op_attached; // base of a 4op channel/part of a 4op channel
+ Bit32s left_pan,right_pan; // opl3 stereo panning amount
+#endif
+} op_type;
+
+// per-chip variables
+Bitu chip_num;
+op_type op[MAXOPERATORS];
+
+Bits int_samplerate;
+
+Bit8u status;
+Bit32u index;
+#if defined(OPLTYPE_IS_OPL3)
+Bit8u adlibreg[512]; // adlib register set (including second set)
+Bit8u wave_sel[44]; // waveform selection
+#else
+Bit8u adlibreg[256]; // adlib register set
+Bit8u wave_sel[22]; // waveform selection
+#endif
+
+
+// vibrato/tremolo increment/counter
+Bit32u vibtab_pos;
+Bit32u vibtab_add;
+Bit32u tremtab_pos;
+Bit32u tremtab_add;
+
+
+// enable an operator
+void enable_operator(Bitu regbase, op_type* op_pt);
+
+// functions to change parameters of an operator
+void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt);
+
+void change_attackrate(Bitu regbase, op_type* op_pt);
+void change_decayrate(Bitu regbase, op_type* op_pt);
+void change_releaserate(Bitu regbase, op_type* op_pt);
+void change_sustainlevel(Bitu regbase, op_type* op_pt);
+void change_waveform(Bitu regbase, op_type* op_pt);
+void change_keepsustain(Bitu regbase, op_type* op_pt);
+void change_vibrato(Bitu regbase, op_type* op_pt);
+void change_feedback(Bitu chanbase, op_type* op_pt);
+
+// general functions
+void adlib_init(Bit32u samplerate);
+void adlib_write(Bitu idx, Bit8u val);
+void adlib_getsample(Bit16s* sndptr, Bits numsamples);
+
+Bitu adlib_reg_read(Bitu port);
+void adlib_write_index(Bitu port, Bit8u val);
+
+static Bit32u generator_add; // should be a chip parameter