aboutsummaryrefslogtreecommitdiff
path: root/sdk-modifications/libsrc/fs/cache.c
blob: 2c66e1ff068b90625edab101076e23f1e0ba98af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 cache.c
 The cache is not visible to the user. It should be flushed 
 when any file is closed or changes are made to the filesystem.
 
 This cache implements a least-used-page replacement policy. This will 
 distribute sectors evenly over the pages, so if less than the maximum 
 pages are used at once, they should all eventually remain in the cache.
 This also has the benefit of throwing out old sectors, so as not to keep
 too many stale pages around.

 Copyright (c) 2006 Michael "Chishm" Chisholm
	
 Redistribution and use in source and binary forms, with or without modification,
 are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice,
     this list of conditions and the following disclaimer in the documentation and/or
     other materials provided with the distribution.
  3. The name of the author may not be used to endorse or promote products derived
     from this software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
 AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include <string.h>

#include "fs_common.h"
#include "fs_cache.h"
#include "disc_io/disc.h"

#include "mem_allocate.h"

#define CACHE_FREE 0xFFFFFFFF

CACHE* _FAT_cache_constructor (u32 numberOfPages, const IO_INTERFACE* discInterface) {
	CACHE* cache;
	u32 i;
	CACHE_ENTRY* cacheEntries;

	if (numberOfPages < 2) {
		numberOfPages = 2;
	}
	
	cache = (CACHE*) _FAT_mem_allocate (sizeof(CACHE));
	if (cache == NULL) {
		return NULL;
	}

	cache->disc = discInterface;
	cache->numberOfPages = numberOfPages;
	

	cacheEntries = (CACHE_ENTRY*) _FAT_mem_allocate ( sizeof(CACHE_ENTRY) * numberOfPages);
	if (cacheEntries == NULL) {
		_FAT_mem_free (cache);
		return NULL;
	}

	for (i = 0; i < numberOfPages; i++) {
		cacheEntries[i].sector = CACHE_FREE;
		cacheEntries[i].count = 0;
		cacheEntries[i].dirty = 0;
	}

	cache->cacheEntries = cacheEntries;

	cache->pages = (u8*) _FAT_mem_allocate ( CACHE_PAGE_SIZE * numberOfPages);
	if (cache->pages == NULL) {
		_FAT_mem_free (cache->cacheEntries);
		_FAT_mem_free (cache);
		return NULL;
	}

	return cache;
}

void _FAT_cache_destructor (CACHE* cache) {
	// Clear out cache before destroying it
	_FAT_cache_flush(cache);

	// Free memory in reverse allocation order
	_FAT_mem_free (cache->pages);
	_FAT_mem_free (cache->cacheEntries);
	_FAT_mem_free (cache);

	return;
}

/*
Retrieve a sector's page from the cache. If it is not found in the cache,
load it into the cache and return the page it was loaded to.
Return CACHE_FREE on error.
*/
static u32 _FAT_cache_getSector (CACHE* cache, u32 sector) {
	u32 i;
	CACHE_ENTRY* cacheEntries = cache->cacheEntries;
	u32 numberOfPages = cache->numberOfPages;

	u32 leastUsed = 0;
	u32 lowestCount = 0xFFFFFFFF;

	for (i = 0; (i < numberOfPages) && (cacheEntries[i].sector != sector); i++) {
		// While searching for the desired sector, also search for the leased used page
		if ( (cacheEntries[i].sector == CACHE_FREE) || (cacheEntries[i].count < lowestCount) ) {
			leastUsed = i;
			lowestCount = cacheEntries[i].count;
		}
	}

	// If it found the sector in the cache, return it
	if ((i < numberOfPages) && (cacheEntries[i].sector == sector)) {
		// Increment usage counter
		cacheEntries[i].count += 1;
		return i;
	}

	// If it didn't, replace the least used cache page with the desired sector
	if ((cacheEntries[leastUsed].sector != CACHE_FREE) && (0xC33CA55A == cacheEntries[leastUsed].dirty)) {
		// Write the page back to disc if it has been written to
		if (!_FAT_disc_writeSectors (cache->disc, cacheEntries[leastUsed].sector, 1, cache->pages + CACHE_PAGE_SIZE * leastUsed)) {
			return CACHE_FREE;
		}
		cacheEntries[leastUsed].dirty = 0;
	}

	// Load the new sector into the cache
	if (!_FAT_disc_readSectors (cache->disc, sector, 1, cache->pages + CACHE_PAGE_SIZE * leastUsed)) {
		return CACHE_FREE;
	}
	cacheEntries[leastUsed].sector = sector;
	// Increment the usage count, don't reset it
	// This creates a paging policy of least used PAGE, not sector
	cacheEntries[leastUsed].count += 1;
	return leastUsed;
}

/*
Reads some data from a cache page, determined by the sector number
*/
bool _FAT_cache_readPartialSector (CACHE* cache, void* buffer, u32 sector, u32 offset, u32 size) {
	u32 page;

	if (offset + size > BYTES_PER_READ) {
		return false;
	}

	page = _FAT_cache_getSector (cache, sector);
	if (page == CACHE_FREE) {
		return false;
	}

	memcpy (buffer, cache->pages + (CACHE_PAGE_SIZE * page) + offset, size);
	return true;
}

/* 
Writes some data to a cache page, making sure it is loaded into memory first.
*/
bool _FAT_cache_writePartialSector (CACHE* cache, const void* buffer, u32 sector, u32 offset, u32 size) {
	u32 page;

	if (offset + size > BYTES_PER_READ) {
		return false;
	}

	page = _FAT_cache_getSector (cache, sector);
	if (page == CACHE_FREE) {
		return false;
	}

	memcpy (cache->pages + (CACHE_PAGE_SIZE * page) + offset, buffer, size);
	cache->cacheEntries[page].dirty = 0xC33CA55A;

	return true;
}

/*
some where call _FAT_cache_writePartialSector to cache sector m , but later, another
place(in fwrite function) directly write data to sector m, in this case, need to
cancel the dirty state of sector m
*/
void _FAT_cache_writePartialSector_check (CACHE* cache, u32 sector, u32 num, const void* buffer)
{
	u32 i, m;
	CACHE_ENTRY* cacheEntries = cache->cacheEntries;
	u32 numberOfPages = cache->numberOfPages;

	m = 0;
	while(m++ < num)
	{
		for (i = 0; i < numberOfPages; i++)
		{
			if(cacheEntries[i].sector == sector)
				break;
		}

		if(i >= numberOfPages)
			return;

		//cache the data
		memcpy (cache->pages + (CACHE_PAGE_SIZE * i), buffer, CACHE_PAGE_SIZE);
		//cancel the dirty state
		cache->cacheEntries[i].dirty = 0;

		sector += 1;
		buffer += CACHE_PAGE_SIZE;
	}
}

/* 
Writes some data to a cache page, zeroing out the page first
*/
bool _FAT_cache_eraseWritePartialSector (CACHE* cache, const void* buffer, u32 sector, u32 offset, u32 size) {
	u32 page;

	if (offset + size > BYTES_PER_READ) {
		return false;
	}

	page = _FAT_cache_getSector (cache, sector);
	if (page == CACHE_FREE) {
		return false;
	}

	memset (cache->pages + (CACHE_PAGE_SIZE * page), 0, CACHE_PAGE_SIZE);
	memcpy (cache->pages + (CACHE_PAGE_SIZE * page) + offset, buffer, size);
	cache->cacheEntries[page].dirty = 0xC33CA55A;

	return true;
}


/*
Flushes all dirty pages to disc, clearing the dirty flag. 
Also resets all pages' page count to 0.
*/
bool _FAT_cache_flush (CACHE* cache) {
	u32 i;

	for (i = 0; i < cache->numberOfPages; i++) {
		if (0xC33CA55A == cache->cacheEntries[i].dirty) {
			if (!_FAT_disc_writeSectors (cache->disc, cache->cacheEntries[i].sector, 1, cache->pages + CACHE_PAGE_SIZE * i)) {
				return CACHE_FREE;
			}
		}
		cache->cacheEntries[i].count = 0;
		cache->cacheEntries[i].dirty = 0;
	}

	_FAT_disc_clearStatus( cache->disc );
	return true;
}

void _FAT_cache_invalidate (CACHE* cache) {
	int i;
	for (i = 0; i < cache->numberOfPages; i++) {
		cache->cacheEntries[i].sector = CACHE_FREE;
		cache->cacheEntries[i].count = 0;
		cache->cacheEntries[i].dirty = 0;
	}
}