blob: 9e3e137781777c0884a255cbcd463f1b635765e4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
#include "../copyright"
uint16_t DSP2Op09Word1 = 0;
uint16_t DSP2Op09Word2 = 0;
bool DSP2Op05HasLen = false;
int32_t DSP2Op05Len = 0;
bool DSP2Op06HasLen = false;
int32_t DSP2Op06Len = 0;
uint8_t DSP2Op05Transparent = 0;
void DSP2_Op05()
{
uint8_t color;
// Overlay bitmap with transparency.
// Input:
//
// Bitmap 1: i[0] <=> i[size-1]
// Bitmap 2: i[size] <=> i[2*size-1]
//
// Output:
//
// Bitmap 3: o[0] <=> o[size-1]
//
// Processing:
//
// Process all 4-bit pixels (nibbles) in the bitmap
//
// if ( BM2_pixel == transparent_color )
// pixelout = BM1_pixel
// else
// pixelout = BM2_pixel
// The max size bitmap is limited to 255 because the size parameter is a byte
// I think size=0 is an error. The behavior of the chip on size=0 is to
// return the last value written to DR if you read DR on Op05 with
// size = 0. I don't think it's worth implementing this quirk unless it's
// proven necessary.
int32_t n;
uint8_t c1;
uint8_t c2;
uint8_t* p1 = DSP1.parameters;
uint8_t* p2 = &DSP1.parameters[DSP2Op05Len];
uint8_t* p3 = DSP1.output;
color = DSP2Op05Transparent & 0x0f;
for (n = 0; n < DSP2Op05Len; n++)
{
c1 = *p1++;
c2 = *p2++;
*p3++ = (((c2 >> 4) == color) ? c1 & 0xf0 : c2 & 0xf0) |
(((c2 & 0x0f) == color) ? c1 & 0x0f : c2 & 0x0f);
}
}
void DSP2_Op01()
{
// Op01 size is always 32 bytes input and output.
// The hardware does strange things if you vary the size.
int32_t j;
uint8_t c0, c1, c2, c3;
uint8_t* p1 = DSP1.parameters;
uint8_t* p2a = DSP1.output;
uint8_t* p2b = &DSP1.output[16]; // halfway
// Process 8 blocks of 4 bytes each
for (j = 0; j < 8; j++)
{
c0 = *p1++;
c1 = *p1++;
c2 = *p1++;
c3 = *p1++;
*p2a++ = (c0 & 0x10) << 3 |
(c0 & 0x01) << 6 |
(c1 & 0x10) << 1 |
(c1 & 0x01) << 4 |
(c2 & 0x10) >> 1 |
(c2 & 0x01) << 2 |
(c3 & 0x10) >> 3 |
(c3 & 0x01);
*p2a++ = (c0 & 0x20) << 2 |
(c0 & 0x02) << 5 |
(c1 & 0x20) |
(c1 & 0x02) << 3 |
(c2 & 0x20) >> 2 |
(c2 & 0x02) << 1 |
(c3 & 0x20) >> 4 |
(c3 & 0x02) >> 1;
*p2b++ = (c0 & 0x40) << 1 |
(c0 & 0x04) << 4 |
(c1 & 0x40) >> 1 |
(c1 & 0x04) << 2 |
(c2 & 0x40) >> 3 |
(c2 & 0x04) |
(c3 & 0x40) >> 5 |
(c3 & 0x04) >> 2;
*p2b++ = (c0 & 0x80) |
(c0 & 0x08) << 3 |
(c1 & 0x80) >> 2 |
(c1 & 0x08) << 1 |
(c2 & 0x80) >> 4 |
(c2 & 0x08) >> 1 |
(c3 & 0x80) >> 6 |
(c3 & 0x08) >> 3;
}
return;
}
void DSP2_Op06()
{
// Input:
// size
// bitmap
int32_t i, j;
for (i = 0, j = DSP2Op06Len - 1; i < DSP2Op06Len; i++, j--)
DSP1.output[j] = (DSP1.parameters[i] << 4) | (DSP1.parameters[i] >> 4);
}
bool DSP2Op0DHasLen = false;
int32_t DSP2Op0DOutLen = 0;
int32_t DSP2Op0DInLen = 0;
// Scale bitmap based on input length out output length
void DSP2_Op0D()
{
// (Modified) Overload's algorithm
int32_t i;
for(i = 0 ; i < DSP2Op0DOutLen ; i++)
{
int32_t j = i << 1;
int32_t pixel_offset_low = ((j * DSP2Op0DInLen) / DSP2Op0DOutLen) >> 1;
int32_t pixel_offset_high = (((j + 1) * DSP2Op0DInLen) / DSP2Op0DOutLen) >> 1;
uint8_t pixel_low = DSP1.parameters[pixel_offset_low] >> 4;
uint8_t pixel_high = DSP1.parameters[pixel_offset_high] & 0x0f;
DSP1.output[i] = (pixel_low << 4) | pixel_high;
}
}
|