1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
|
/* explode.c -- Not copyrighted 1992 by Mark Adler
version c7, 27 June 1992 */
/* You can do whatever you like with this source file, though I would
prefer that if you modify it and redistribute it that you include
comments to that effect with your name and the date. Thank you.
History:
vers date who what
---- --------- -------------- ------------------------------------
c1 30 Mar 92 M. Adler explode that uses huft_build from inflate
(this gives over a 70% speed improvement
over the original unimplode.c, which
decoded a bit at a time)
c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
c3 10 Apr 92 M. Adler added a little memory tracking if DEBUG
c4 11 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy()
c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing
the 32K window size for specialized
applications.
c6 31 May 92 M. Adler added typecasts to eliminate some warnings
c7 27 Jun 92 G. Roelofs added more typecasts
*/
/*
Explode imploded (PKZIP method 6 compressed) data. This compression
method searches for as much of the current string of bytes (up to a length
of ~320) in the previous 4K or 8K bytes. If it doesn't find any matches
(of at least length 2 or 3), it codes the next byte. Otherwise, it codes
the length of the matched string and its distance backwards from the
current position. Single bytes ("literals") are preceded by a one (a
single bit) and are either uncoded (the eight bits go directly into the
compressed stream for a total of nine bits) or Huffman coded with a
supplied literal code tree. If literals are coded, then the minimum match
length is three, otherwise it is two.
There are therefore four kinds of imploded streams: 8K search with coded
literals (min match = 3), 4K search with coded literals (min match = 3),
8K with uncoded literals (min match = 2), and 4K with uncoded literals
(min match = 2). The kind of stream is identified in two bits of a
general purpose bit flag that is outside of the compressed stream.
Distance-length pairs are always coded. Distance-length pairs for matched
strings are preceded by a zero bit (to distinguish them from literals) and
are always coded. The distance comes first and is either the low six (4K)
or low seven (8K) bits of the distance (uncoded), followed by the high six
bits of the distance coded. Then the length is six bits coded (0..63 +
min match length), and if the maximum such length is coded, then it's
followed by another eight bits (uncoded) to be added to the coded length.
This gives a match length range of 2..320 or 3..321 bytes.
The literal, length, and distance codes are all represented in a slightly
compressed form themselves. What is sent are the lengths of the codes for
each value, which is sufficient to construct the codes. Each byte of the
code representation is the code length (the low four bits representing
1..16), and the number of values sequentially with that length (the high
four bits also representing 1..16). There are 256 literal code values (if
literals are coded), 64 length code values, and 64 distance code values,
in that order at the beginning of the compressed stream. Each set of code
values is preceded (redundantly) with a byte indicating how many bytes are
in the code description that follows, in the range 1..256.
The codes themselves are decoded using tables made by huft_build() from
the bit lengths. That routine and its comments are in the inflate.c
module.
*/
#include "unz.h" /* this must supply the slide[] (byte) array */
#include "unzipP.h"
//#include <stdlib.h>
#include "ds2_malloc.h"
#ifndef WSIZE
# define WSIZE 0x8000 /* window size--must be a power of two, and at least
8K for zip's implode method */
#endif /* !WSIZE */
struct huft {
byte e; /* number of extra bits or operation */
byte b; /* number of bits in this code or subcode */
union {
UWORD n; /* literal, length base, or distance base */
struct huft *t; /* pointer to next level of table */
} v;
};
/* Function prototypes */
/* routines from inflate.c */
extern unsigned hufts;
int huft_build OF((unsigned *, unsigned, unsigned, UWORD *, UWORD *,
struct huft **, int *));
int huft_free OF((struct huft *));
void flush OF((unsigned));
/* routines here */
int get_tree OF((unsigned *, unsigned));
int explode_lit8 OF((struct huft *, struct huft *, struct huft *,
int, int, int));
int explode_lit4 OF((struct huft *, struct huft *, struct huft *,
int, int, int));
int explode_nolit8 OF((struct huft *, struct huft *, int, int));
int explode_nolit4 OF((struct huft *, struct huft *, int, int));
int explode ();
extern file_in_zip_read_info_s *pfile_in_zip_read_info;
extern unz_s *pUnzip;
/* The implode algorithm uses a sliding 4K or 8K byte window on the
uncompressed stream to find repeated byte strings. This is implemented
here as a circular buffer. The index is updated simply by incrementing
and then and'ing with 0x0fff (4K-1) or 0x1fff (8K-1). Here, the 32K
buffer of inflate is used, and it works just as well to always have
a 32K circular buffer, so the index is anded with 0x7fff. This is
done to allow the window to also be used as the output buffer. */
/* This must be supplied in an external module useable like "byte slide[8192];"
or "byte *slide;", where the latter would be malloc'ed. In unzip, slide[]
is actually a 32K area for use by inflate, which uses a 32K sliding window.
*/
/* Tables for length and distance */
UWORD cplen2[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65};
UWORD cplen3[] = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66};
UWORD extra[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
8};
UWORD cpdist4[] = {1, 65, 129, 193, 257, 321, 385, 449, 513, 577, 641, 705,
769, 833, 897, 961, 1025, 1089, 1153, 1217, 1281, 1345, 1409, 1473,
1537, 1601, 1665, 1729, 1793, 1857, 1921, 1985, 2049, 2113, 2177,
2241, 2305, 2369, 2433, 2497, 2561, 2625, 2689, 2753, 2817, 2881,
2945, 3009, 3073, 3137, 3201, 3265, 3329, 3393, 3457, 3521, 3585,
3649, 3713, 3777, 3841, 3905, 3969, 4033};
UWORD cpdist8[] = {1, 129, 257, 385, 513, 641, 769, 897, 1025, 1153, 1281,
1409, 1537, 1665, 1793, 1921, 2049, 2177, 2305, 2433, 2561, 2689,
2817, 2945, 3073, 3201, 3329, 3457, 3585, 3713, 3841, 3969, 4097,
4225, 4353, 4481, 4609, 4737, 4865, 4993, 5121, 5249, 5377, 5505,
5633, 5761, 5889, 6017, 6145, 6273, 6401, 6529, 6657, 6785, 6913,
7041, 7169, 7297, 7425, 7553, 7681, 7809, 7937, 8065};
/* Macros for inflate() bit peeking and grabbing.
The usage is:
NEEDBITS(j)
x = b & mask_bits[j];
DUMPBITS(j)
where NEEDBITS makes sure that b has at least j bits in it, and
DUMPBITS removes the bits from b. The macros use the variable k
for the number of bits in b. Normally, b and k are register
variables for speed.
*/
extern UWORD bytebuf; /* (use the one in inflate.c) */
#define NEXTBYTE (ReadByte(&bytebuf), bytebuf)
#define NEEDBITS(n) {while(k<(n)){b|=((ULONG)NEXTBYTE)<<k;k+=8;}}
#define DUMPBITS(n) {b>>=(n);k-=(n);}
/* HERE */
UWORD mask_bits[] = {
0x0000,
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
union work area; /* see unzip.h for the definition of work */
ULONG crc32val;
ush bytebuf;
ULONG bitbuf;
int bits_left;
boolean zipeof;
int get_tree(l, n)
unsigned *l; /* bit lengths */
unsigned n; /* number expected */
/* Get the bit lengths for a code representation from the compressed
stream. If get_tree() returns 4, then there is an error in the data.
Otherwise zero is returned. */
{
unsigned i; /* bytes remaining in list */
unsigned k; /* lengths entered */
unsigned j; /* number of codes */
unsigned b; /* bit length for those codes */
/* get bit lengths */
ReadByte(&bytebuf);
i = bytebuf + 1; /* length/count pairs to read */
k = 0; /* next code */
do {
ReadByte(&bytebuf);
b = ((j = bytebuf) & 0xf) + 1; /* bits in code (1..16) */
j = ((j & 0xf0) >> 4) + 1; /* codes with those bits (1..16) */
if (k + j > n)
return 4; /* don't overflow l[] */
do {
l[k++] = b;
} while (--j);
} while (--i);
return k != n ? 4 : 0; /* should have read n of them */
}
int explode_lit8(tb, tl, td, bb, bl, bd)
struct huft *tb, *tl, *td; /* literal, length, and distance tables */
int bb, bl, bd; /* number of bits decoded by those */
/* Decompress the imploded data using coded literals and an 8K sliding
window. */
{
longint s; /* bytes to decompress */
register unsigned e; /* table entry flag/number of extra bits */
unsigned n, d; /* length and index for copy */
unsigned w; /* current window position */
struct huft *t; /* pointer to table entry */
unsigned mb, ml, md; /* masks for bb, bl, and bd bits */
register ULONG b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
unsigned u; /* true if unflushed */
/* explode the coded data */
b = k = w = 0; /* initialize bit buffer, window */
u = 1; /* buffer unflushed */
mb = mask_bits[bb]; /* precompute masks for speed */
ml = mask_bits[bl];
md = mask_bits[bd];
s = pUnzip->pfile_in_zip_read->rest_read_uncompressed;
while (s > 0) /* do until ucsize bytes uncompressed */
{
NEEDBITS(1)
if (b & 1) /* then literal--decode it */
{
DUMPBITS(1)
s--;
NEEDBITS((unsigned)bb) /* get coded literal */
if ((e = (t = tb + ((~(unsigned)b) & mb))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
slide[w++] = (byte)t->v.n;
if (w == WSIZE)
{
flush(w);
w = u = 0;
}
}
else /* else distance/length */
{
DUMPBITS(1)
NEEDBITS(7) /* get distance low bits */
d = (unsigned)b & 0x7f;
DUMPBITS(7)
NEEDBITS((unsigned)bd) /* get coded distance high bits */
if ((e = (t = td + ((~(unsigned)b) & md))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
d = w - d - t->v.n; /* construct offset */
NEEDBITS((unsigned)bl) /* get coded length */
if ((e = (t = tl + ((~(unsigned)b) & ml))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
n = t->v.n;
if (e) /* get length extra bits */
{
NEEDBITS(8)
n += (unsigned)b & 0xff;
DUMPBITS(8)
}
/* do the copy */
s -= n;
do {
n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
if (u && w <= d)
{
memset(slide + w, 0, e);
w += e;
d += e;
}
else
#ifndef NOMEMCPY
if (w - d >= e) /* (this test assumes unsigned comparison) */
{
memcpy(slide + w, slide + d, e);
w += e;
d += e;
}
else /* do it slow to avoid memcpy() overlap */
#endif /* !NOMEMCPY */
do {
slide[w++] = slide[d++];
} while (--e);
if (w == WSIZE)
{
flush(w);
w = u = 0;
}
} while (n);
}
}
/* flush out slide */
flush(w);
return pfile_in_zip_read_info->rest_read_compressed ? 5 : 0; /* should have read csize bytes */
}
int explode_lit4(tb, tl, td, bb, bl, bd)
struct huft *tb, *tl, *td; /* literal, length, and distance tables */
int bb, bl, bd; /* number of bits decoded by those */
/* Decompress the imploded data using coded literals and a 4K sliding
window. */
{
longint s; /* bytes to decompress */
register unsigned e; /* table entry flag/number of extra bits */
unsigned n, d; /* length and index for copy */
unsigned w; /* current window position */
struct huft *t; /* pointer to table entry */
unsigned mb, ml, md; /* masks for bb, bl, and bd bits */
register ULONG b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
unsigned u; /* true if unflushed */
/* explode the coded data */
b = k = w = 0; /* initialize bit buffer, window */
u = 1; /* buffer unflushed */
mb = mask_bits[bb]; /* precompute masks for speed */
ml = mask_bits[bl];
md = mask_bits[bd];
s = pUnzip->pfile_in_zip_read->rest_read_uncompressed;
while (s > 0) /* do until ucsize bytes uncompressed */
{
NEEDBITS(1)
if (b & 1) /* then literal--decode it */
{
DUMPBITS(1)
s--;
NEEDBITS((unsigned)bb) /* get coded literal */
if ((e = (t = tb + ((~(unsigned)b) & mb))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
slide[w++] = (byte)t->v.n;
if (w == WSIZE)
{
flush(w);
w = u = 0;
}
}
else /* else distance/length */
{
DUMPBITS(1)
NEEDBITS(6) /* get distance low bits */
d = (unsigned)b & 0x3f;
DUMPBITS(6)
NEEDBITS((unsigned)bd) /* get coded distance high bits */
if ((e = (t = td + ((~(unsigned)b) & md))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
d = w - d - t->v.n; /* construct offset */
NEEDBITS((unsigned)bl) /* get coded length */
if ((e = (t = tl + ((~(unsigned)b) & ml))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
n = t->v.n;
if (e) /* get length extra bits */
{
NEEDBITS(8)
n += (unsigned)b & 0xff;
DUMPBITS(8)
}
/* do the copy */
s -= n;
do {
n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
if (u && w <= d)
{
memset(slide + w, 0, e);
w += e;
d += e;
}
else
#ifndef NOMEMCPY
if (w - d >= e) /* (this test assumes unsigned comparison) */
{
memcpy(slide + w, slide + d, e);
w += e;
d += e;
}
else /* do it slow to avoid memcpy() overlap */
#endif /* !NOMEMCPY */
do {
slide[w++] = slide[d++];
} while (--e);
if (w == WSIZE)
{
flush(w);
w = u = 0;
}
} while (n);
}
}
/* flush out slide */
flush(w);
return pfile_in_zip_read_info->rest_read_compressed ? 5 : 0; /* should have read csize bytes */
}
int explode_nolit8(tl, td, bl, bd)
struct huft *tl, *td; /* length and distance decoder tables */
int bl, bd; /* number of bits decoded by tl[] and td[] */
/* Decompress the imploded data using uncoded literals and an 8K sliding
window. */
{
longint s; /* bytes to decompress */
register unsigned e; /* table entry flag/number of extra bits */
unsigned n, d; /* length and index for copy */
unsigned w; /* current window position */
struct huft *t; /* pointer to table entry */
unsigned ml, md; /* masks for bl and bd bits */
register ULONG b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
unsigned u; /* true if unflushed */
/* explode the coded data */
b = k = w = 0; /* initialize bit buffer, window */
u = 1; /* buffer unflushed */
ml = mask_bits[bl]; /* precompute masks for speed */
md = mask_bits[bd];
s = pUnzip->pfile_in_zip_read->rest_read_uncompressed;
while (s > 0) /* do until ucsize bytes uncompressed */
{
NEEDBITS(1)
if (b & 1) /* then literal--get eight bits */
{
DUMPBITS(1)
s--;
NEEDBITS(8)
slide[w++] = (byte)b;
if (w == WSIZE)
{
flush(w);
w = u = 0;
}
DUMPBITS(8)
}
else /* else distance/length */
{
DUMPBITS(1)
NEEDBITS(7) /* get distance low bits */
d = (unsigned)b & 0x7f;
DUMPBITS(7)
NEEDBITS((unsigned)bd) /* get coded distance high bits */
if ((e = (t = td + ((~(unsigned)b) & md))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
d = w - d - t->v.n; /* construct offset */
NEEDBITS((unsigned)bl) /* get coded length */
if ((e = (t = tl + ((~(unsigned)b) & ml))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
n = t->v.n;
if (e) /* get length extra bits */
{
NEEDBITS(8)
n += (unsigned)b & 0xff;
DUMPBITS(8)
}
/* do the copy */
s -= n;
do {
n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
if (u && w <= d)
{
memset(slide + w, 0, e);
w += e;
d += e;
}
else
#ifndef NOMEMCPY
if (w - d >= e) /* (this test assumes unsigned comparison) */
{
memcpy(slide + w, slide + d, e);
w += e;
d += e;
}
else /* do it slow to avoid memcpy() overlap */
#endif /* !NOMEMCPY */
do {
slide[w++] = slide[d++];
} while (--e);
if (w == WSIZE)
{
flush(w);
w = u = 0;
}
} while (n);
}
}
/* flush out slide */
flush(w);
return pfile_in_zip_read_info->rest_read_compressed ? 5 : 0; /* should have read csize bytes */
}
int explode_nolit4(tl, td, bl, bd)
struct huft *tl, *td; /* length and distance decoder tables */
int bl, bd; /* number of bits decoded by tl[] and td[] */
/* Decompress the imploded data using uncoded literals and a 4K sliding
window. */
{
longint s; /* bytes to decompress */
register unsigned e; /* table entry flag/number of extra bits */
unsigned n, d; /* length and index for copy */
unsigned w; /* current window position */
struct huft *t; /* pointer to table entry */
unsigned ml, md; /* masks for bl and bd bits */
register ULONG b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
unsigned u; /* true if unflushed */
/* explode the coded data */
b = k = w = 0; /* initialize bit buffer, window */
u = 1; /* buffer unflushed */
ml = mask_bits[bl]; /* precompute masks for speed */
md = mask_bits[bd];
s = pUnzip->pfile_in_zip_read->rest_read_uncompressed;
while (s > 0) /* do until ucsize bytes uncompressed */
{
NEEDBITS(1)
if (b & 1) /* then literal--get eight bits */
{
DUMPBITS(1)
s--;
NEEDBITS(8)
slide[w++] = (byte)b;
if (w == WSIZE)
{
flush(w);
w = u = 0;
}
DUMPBITS(8)
}
else /* else distance/length */
{
DUMPBITS(1)
NEEDBITS(6) /* get distance low bits */
d = (unsigned)b & 0x3f;
DUMPBITS(6)
NEEDBITS((unsigned)bd) /* get coded distance high bits */
if ((e = (t = td + ((~(unsigned)b) & md))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
d = w - d - t->v.n; /* construct offset */
NEEDBITS((unsigned)bl) /* get coded length */
if ((e = (t = tl + ((~(unsigned)b) & ml))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((~(unsigned)b) & mask_bits[e]))->e) > 16);
DUMPBITS(t->b)
n = t->v.n;
if (e) /* get length extra bits */
{
NEEDBITS(8)
n += (unsigned)b & 0xff;
DUMPBITS(8)
}
/* do the copy */
s -= n;
do {
n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
if (u && w <= d)
{
memset(slide + w, 0, e);
w += e;
d += e;
}
else
#ifndef NOMEMCPY
if (w - d >= e) /* (this test assumes unsigned comparison) */
{
memcpy(slide + w, slide + d, e);
w += e;
d += e;
}
else /* do it slow to avoid memcpy() overlap */
#endif /* !NOMEMCPY */
do {
slide[w++] = slide[d++];
} while (--e);
if (w == WSIZE)
{
flush(w);
w = u = 0;
}
} while (n);
}
}
/* flush out slide */
flush(w);
return pfile_in_zip_read_info->rest_read_compressed ? 5 : 0; /* should have read csize bytes */
}
int explode ()
/* Explode an imploded compressed stream. Based on the general purpose
bit flag, decide on coded or uncoded literals, and an 8K or 4K sliding
window. Construct the literal (if any), length, and distance codes and
the tables needed to decode them (using huft_build() from inflate.c),
and call the appropriate routine for the type of data in the remainder
of the stream. The four routines are nearly identical, differing only
in whether the literal is decoded or simply read in, and in how many
bits are read in, uncoded, for the low distance bits. */
{
unsigned r; /* return codes */
struct huft *tb; /* literal code table */
struct huft *tl; /* length code table */
struct huft *td; /* distance code table */
int bb; /* bits for tb */
int bl; /* bits for tl */
int bd; /* bits for td */
unsigned l[256]; /* bit lengths for codes */
/* Tune base table sizes. Note: I thought that to truly optimize speed,
I would have to select different bl, bd, and bb values for different
compressed file sizes. I was suprised to find out the the values of
7, 7, and 9 worked best over a very wide range of sizes, except that
bd = 8 worked marginally better for large compressed sizes. */
bl = 7;
bd = pUnzip->pfile_in_zip_read->rest_read_compressed > 200000L ? 8 : 7;
/* With literal tree--minimum match length is 3 */
hufts = 0; /* initialze huft's malloc'ed */
if (pUnzip->cur_file_info.flag & 4)
{
bb = 9; /* base table size for literals */
if ((r = get_tree(l, 256)) != 0)
return r;
if ((r = huft_build(l, 256, 256, NULL, NULL, &tb, &bb)) != 0)
{
if (r == 1)
huft_free(tb);
return r;
}
if ((r = get_tree(l, 64)) != 0)
return r;
if ((r = huft_build(l, 64, 0, cplen3, extra, &tl, &bl)) != 0)
{
if (r == 1)
huft_free(tl);
huft_free(tb);
return r;
}
if ((r = get_tree(l, 64)) != 0)
return r;
if (pUnzip->cur_file_info.flag & 2) /* true if 8K */
{
if ((r = huft_build(l, 64, 0, cpdist8, extra, &td, &bd)) != 0)
{
if (r == 1)
huft_free(td);
huft_free(tl);
huft_free(tb);
return r;
}
r = explode_lit8(tb, tl, td, bb, bl, bd);
}
else /* else 4K */
{
if ((r = huft_build(l, 64, 0, cpdist4, extra, &td, &bd)) != 0)
{
if (r == 1)
huft_free(td);
huft_free(tl);
huft_free(tb);
return r;
}
r = explode_lit4(tb, tl, td, bb, bl, bd);
}
huft_free(td);
huft_free(tl);
huft_free(tb);
}
else
/* No literal tree--minimum match length is 2 */
{
if ((r = get_tree(l, 64)) != 0)
return r;
if ((r = huft_build(l, 64, 0, cplen2, extra, &tl, &bl)) != 0)
{
if (r == 1)
huft_free(tl);
return r;
}
if ((r = get_tree(l, 64)) != 0)
return r;
if (pUnzip->cur_file_info.flag & 2) /* true if 8K */
{
if ((r = huft_build(l, 64, 0, cpdist8, extra, &td, &bd)) != 0)
{
if (r == 1)
huft_free(td);
huft_free(tl);
return r;
}
r = explode_nolit8(tl, td, bl, bd);
}
else /* else 4K */
{
if ((r = huft_build(l, 64, 0, cpdist4, extra, &td, &bd)) != 0)
{
if (r == 1)
huft_free(td);
huft_free(tl);
return r;
}
r = explode_nolit4(tl, td, bl, bd);
}
huft_free(td);
huft_free(tl);
}
#ifdef DEBUG
fprintf(stderr, "<%u > ", hufts);
#endif /* DEBUG */
return r;
}
int ReadByte(x)
UWORD *x;
{
/*
* read a byte; return 8 if byte available, 0 if not
*/
if (pfile_in_zip_read_info->stream.avail_in == 0)
{
unsigned int uReadThis = UNZ_BUFSIZE;
if (pfile_in_zip_read_info->rest_read_compressed <= 0)
return (0);
if (pfile_in_zip_read_info->rest_read_compressed < uReadThis)
uReadThis = (uInt) pfile_in_zip_read_info->rest_read_compressed;
if (uReadThis == 0)
return UNZ_EOF;
if (fseek (pfile_in_zip_read_info->file,
pfile_in_zip_read_info->pos_in_zipfile +
pfile_in_zip_read_info->byte_before_the_zipfile, SEEK_SET) != 0)
return UNZ_ERRNO;
if (fread (pfile_in_zip_read_info->read_buffer, uReadThis, 1,
pfile_in_zip_read_info->file) != 1)
return UNZ_ERRNO;
pfile_in_zip_read_info->pos_in_zipfile += uReadThis;
pfile_in_zip_read_info->rest_read_compressed -= uReadThis;
pfile_in_zip_read_info->stream.next_in =
(Bytef *) pfile_in_zip_read_info->read_buffer;
pfile_in_zip_read_info->stream.avail_in = (uInt) uReadThis;
}
*x = *pfile_in_zip_read_info->stream.next_in++;
pfile_in_zip_read_info->stream.avail_in--;
return 8;
}
/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
#define BMAX 16 /* maximum bit length of any code (16 for explode) */
#define N_MAX 288 /* maximum number of codes in any set */
unsigned hufts; /* track memory usage */
int huft_build(b, n, s, d, e, t, m)
unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
unsigned n; /* number of codes (assumed <= N_MAX) */
unsigned s; /* number of simple-valued codes (0..s-1) */
ush *d; /* list of base values for non-simple codes */
ush *e; /* list of extra bits for non-simple codes */
struct huft **t; /* result: starting table */
int *m; /* maximum lookup bits, returns actual */
/* Given a list of code lengths and a maximum table size, make a set of
tables to decode that set of codes. Return zero on success, one if
the given code set is incomplete (the tables are still built in this
case), two if the input is invalid (all zero length codes or an
oversubscribed set of lengths), and three if not enough memory. */
{
unsigned a; /* counter for codes of length k */
unsigned c[BMAX+1]; /* bit length count table */
unsigned f; /* i repeats in table every f entries */
int g; /* maximum code length */
int h; /* table level */
register unsigned i; /* counter, current code */
register unsigned j; /* counter */
register int k; /* number of bits in current code */
int l; /* bits per table (returned in m) */
register unsigned *p; /* pointer into c[], b[], or v[] */
register struct huft *q; /* points to current table */
struct huft r; /* table entry for structure assignment */
struct huft *u[BMAX]; /* table stack */
unsigned v[N_MAX]; /* values in order of bit length */
register int w; /* bits before this table == (l * h) */
unsigned x[BMAX+1]; /* bit offsets, then code stack */
unsigned *xp; /* pointer into x */
int y; /* number of dummy codes added */
unsigned z; /* number of entries in current table */
/* Generate counts for each bit length */
memset(c, 0, sizeof(c));
p = b; i = n;
do {
c[*p++]++; /* assume all entries <= BMAX */
} while (--i);
if (c[0] == n) /* null input--all zero length codes */
{
*t = (struct huft *)NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
l = *m;
for (j = 1; j <= BMAX; j++)
if (c[j])
break;
k = j; /* minimum code length */
if ((unsigned)l < j)
l = j;
for (i = BMAX; i; i--)
if (c[i])
break;
g = i; /* maximum code length */
if ((unsigned)l > i)
l = i;
*m = l;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= c[j]) < 0)
return 2; /* bad input: more codes than bits */
if ((y -= c[i]) < 0)
return 2;
c[i] += y;
/* Generate starting offsets into the value table for each length */
x[1] = j = 0;
p = c + 1; xp = x + 2;
while (--i) { /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
p = b; i = 0;
do {
if ((j = *p++) != 0)
v[x[j]++] = i;
} while (++i < n);
/* Generate the Huffman codes and for each, make the table entries */
x[0] = i = 0; /* first Huffman code is zero */
p = v; /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = -l; /* bits decoded == (l * h) */
u[0] = (struct huft *)NULL; /* just to keep compilers happy */
q = (struct huft *)NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = c[k];
while (a--)
{
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l)
{
h++;
w += l; /* previous table always l bits */
/* compute minimum size table less than or equal to l bits */
z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = c + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp)
break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
z = 1 << j; /* table entries for j-bit table */
/* allocate and link in new table */
if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
(struct huft *)NULL)
{
if (h)
huft_free(u[0]);
return 3; /* not enough memory */
}
hufts += z + 1; /* track memory usage */
*t = q + 1; /* link to list for huft_free() */
*(t = &(q->v.t)) = (struct huft *)NULL;
u[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h)
{
x[h] = i; /* save pattern for backing up */
r.b = (uch)l; /* bits to dump before this table */
r.e = (uch)(16 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = i >> (w - l); /* (get around Turbo C bug) */
u[h-1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (uch)(k - w);
if (p >= v + n)
r.e = 99; /* out of values--invalid code */
else if (*p < s)
{
r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
r.v.n = *p++; /* simple code is just the value */
}
else
{
r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
r.v.n = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != x[h])
{
h--; /* don't need to update q */
w -= l;
}
}
}
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
int huft_free(t)
struct huft *t; /* table to free */
/* Free the malloc'ed tables built by huft_build(), which makes a linked
list of the tables it made, with the links in a dummy first entry of
each table. */
{
register struct huft *p, *q;
/* Go through linked list, freeing from the malloced (t[-1]) address. */
p = t;
while (p != (struct huft *)NULL)
{
q = (--p)->v.t;
free(p);
p = q;
}
return 0;
}
void flush(w)
unsigned w; /* number of bytes to flush */
/* Do the equivalent of OUTB for the bytes slide[0..w-1]. */
{
memmove (pfile_in_zip_read_info->stream.next_out, slide, w);
pfile_in_zip_read_info->crc32 = crc32 (pfile_in_zip_read_info->crc32,
pfile_in_zip_read_info->stream.next_out,
w);
pfile_in_zip_read_info->stream.next_out += w;
pfile_in_zip_read_info->stream.avail_out -= w;
pfile_in_zip_read_info->stream.total_out += w;
}
void flush_stack(w)
unsigned w; /* number of bytes to flush */
/* Do the equivalent of OUTB for the bytes slide[0..w-1]. */
{
memmove (pfile_in_zip_read_info->stream.next_out, stack, w);
pfile_in_zip_read_info->crc32 = crc32 (pfile_in_zip_read_info->crc32,
pfile_in_zip_read_info->stream.next_out,
w);
pfile_in_zip_read_info->stream.next_out += w;
pfile_in_zip_read_info->stream.avail_out -= w;
pfile_in_zip_read_info->stream.total_out += w;
}
/****************************/
/* Function FillBitBuffer() */
/****************************/
int FillBitBuffer()
{
/*
* Fill bitbuf, which is 32 bits. This function is only used by the
* READBIT and PEEKBIT macros (which are used by all of the uncompression
* routines).
*/
UWORD temp;
zipeof = 1;
while (bits_left < 25 && ReadByte(&temp) == 8)
{
bitbuf |= (ULONG)temp << bits_left;
bits_left += 8;
zipeof = 0;
}
return 0;
}
|